【題目】下列兩圖的網(wǎng)格都是由邊長為1的小正方形組成,我們把頂點在正方形頂點的三角形稱為格點三角形.

(1)求圖①中格點△ABC的周長和面積;

(2)在圖②中畫出格點△DEF,使它的邊長滿足DE=2,DF=5,EF=,并求出△DEF的面積.

【答案】(1)△ABC的周長為,S△ABC=4;(2)S△DEF=7.

【解析】

(1)先構(gòu)造直角三角形,然后依據(jù)勾股定理求得AB、AC、BC的長,從而可求得△ABC的周長,依據(jù)△ABC的面積=矩形DCEF的面積-3個直角三角形的面積求解即可;

(2)依據(jù)勾股定理確定出DE、DF、EF的長,然后依據(jù)(1)中方法將三角形的面積轉(zhuǎn)化為一個矩形的面積與3個直角三角形的面積之差求解即可.

(1)由圖可得AB=,BC==2,AC=,

∴△ABC的周長為AB+BC+AC=+2=3

SABC=2×6-×1×2-×2×4-×1×6=4;

(2)DEF如圖所示(答案不唯一).

SDEF=4×5-×2×2-×3×4-×2×5=7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形; ②當(dāng)AM的值為時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于點D,P是 上的一個動點,連接AP,則AP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2

1)點B在點A右邊距A4個單位長度,求點B所對應(yīng)的數(shù);

2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當(dāng)點A運動到﹣6所在的點處時,求A,B兩點間距離.

3)在2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC,∠ACB=90°,AC=BC,CDABD,M,NAC,BC上的動點,且∠MDN=90°,下列結(jié)論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 (   )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組):

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1,l2之間的距離為1l2,l3之間的距離為2,則AC的長是( )

A. B. C. 5 D.

查看答案和解析>>

同步練習(xí)冊答案