【題目】某校組織了一次七年級(jí)科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品,C班提供的參賽作品的獲獎(jiǎng)率為50%,其他幾個(gè)班的參賽作品情況及獲獎(jiǎng)情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.
(1)B班參賽作品有多少件?
(2)請(qǐng)你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;
(3)通過計(jì)算說明,哪個(gè)班的獲獎(jiǎng)率高?
【答案】(1)B班參賽作品有25件;(2)補(bǔ)圖見解析;(3)C班的獲獎(jiǎng)率高.
【解析】試題分析:(1)直接利用扇形統(tǒng)計(jì)圖中百分?jǐn)?shù),求出B班所占的百分比,進(jìn)而求出B班參賽作品數(shù);
(2)利用C班提供的參賽作品的獲獎(jiǎng)率為50%,結(jié)合C班參賽數(shù)量得出獲獎(jiǎng)數(shù)量,從而補(bǔ)全統(tǒng)計(jì)圖;
(3)分別求出各班的獲獎(jiǎng)率,進(jìn)行比較從而得出答案.
試題解析:(1)B班參賽作品有;
(2)C班參賽作品獲獎(jiǎng)數(shù)量為,
補(bǔ)圖如下:
;
(3)A班的獲獎(jiǎng)率為 ,
B班的獲獎(jiǎng)率為,
C班的獲獎(jiǎng)率為50%,
D班的獲獎(jiǎng)率為,
故C班的獲獎(jiǎng)率高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)等腰三角形的兩邊長(zhǎng)分別為3和5,則它的周長(zhǎng)為( )
A.11
B.12
C.13
D.11或13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)ΔODP是腰長(zhǎng)為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時(shí)從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當(dāng)甲到達(dá)學(xué)校時(shí),乙同學(xué)離學(xué)校還有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=90°.
(1)請(qǐng)?jiān)贐C上找一點(diǎn)P,作⊙P與AC,AB都相切,切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=3,BC=4,求第(1)題中所作圓的半徑;
(3)連結(jié)BQ,第(2)中的條件均不變,求sin∠CBQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】算24點(diǎn)游戲是一種使用撲克牌來進(jìn)行的益智類游戲,游戲內(nèi)容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運(yùn)用你所學(xué)過的加、減、乘、除、乘方運(yùn)算得出24.每張牌都必須使用一次,但不能重復(fù)使用.
(1)如圖1,在玩“24點(diǎn)”游戲時(shí),小明抽到以下4張牌:
請(qǐng)你幫他寫出運(yùn)算結(jié)果為24的算式:(寫出2個(gè)); 、 ;
(2)如圖2,如果、表示正,. 表示負(fù),J表示11點(diǎn),Q表示12點(diǎn).請(qǐng)你用下列4張牌表示的數(shù)寫出運(yùn)算結(jié)果為24的算式(寫出1個(gè)): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OC,BC的函數(shù)關(guān)系式分別是y1=x和y2=-x+6,兩直線的交點(diǎn)為C.
(1)求點(diǎn)C的坐標(biāo),并直接寫出y1>y2時(shí)x的范圍;
(2)在直線y1上找點(diǎn)D,使△DCB的面積是△COB的一半,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M(t,0)是軸上的任意一點(diǎn),過點(diǎn)M作直線l⊥軸,分別交直線y1、 y2于點(diǎn)E、F,當(dāng)E、F兩點(diǎn)間的距離不超過4時(shí),求t的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com