【題目】如圖,觀察圖象,回答問題:
(1)點(diǎn)D的縱坐標(biāo)等于____.
(2)點(diǎn)A的橫坐標(biāo)是方程______的解.
(3)大于點(diǎn)B橫坐標(biāo)的x的值是不等式________的解.
(4)點(diǎn)C的橫、縱坐標(biāo)是方程組_________的解.
(5)小于點(diǎn)C橫坐標(biāo)的x的值是不等式__________的解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,F為BE的中點(diǎn),連結(jié)DF,CF.
(1)如圖①,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請直接寫出此時(shí)線段DF,CF的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖②,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,請你判斷此時(shí)(1)中的結(jié)論是否仍然成立,并證明你的判斷.
(3)如圖③,在(1)的條件下將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,若AD=1,AC=2,求此時(shí)線段CF的長(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=x2﹣2x+k與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3)(圖2,圖3為解答備用圖).
(1)k= ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在DF上,點(diǎn)B在AC上,∠1=∠2,∠C=∠D.
試說明:AC∥DF.將過程補(bǔ)充完整.
解:∵∠1=∠2( )
∠1=∠3( )
∴∠2=∠3()
∴∥ ( )
∴∠C=∠ABD ( )
又∵∠C=∠D()
∴∠D=∠ABD( )
∴AC∥DF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點(diǎn)A的切線交于點(diǎn)D,連接DC并延長交AB的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點(diǎn),EC=2BE,點(diǎn)D是AC的中點(diǎn),設(shè)△ABC,△ADF,△BEF的面積分別為S△ABC , S△ADF , S△BEF , 且S△ABC=12,則S△ADF﹣S△BEF=( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,為了滿足百姓的消費(fèi)需求,某商場計(jì)劃購進(jìn)冰箱、彩電進(jìn)行銷售.冰箱、彩電的進(jìn)價(jià)、售價(jià)如表:
進(jìn)價(jià)(元/臺) | 售價(jià)(元/臺) | |
冰箱 | M | 2500 |
彩電 | m﹣400 | 2000 |
(1)商場用80000元購進(jìn)冰箱的數(shù)量用64000元購進(jìn)彩電的數(shù)量相等,求表中m的值;
(2)為了滿足市場需要要求,商場決定用不超過9萬元采購冰箱、彩電共50臺,且冰箱的數(shù)量不少于彩電數(shù)量的;若該商場將購進(jìn)的冰箱、彩電全部售出,求能獲得的最大利潤w的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com