【題目】如圖,是住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓間的距離AC=30m,現(xiàn)需了解甲樓對(duì)乙樓的采光的影響情況.
(1)當(dāng)太陽光與水平線的夾角為30°角時(shí),求甲樓的影子在乙樓上有多高(精確到0.1m,=1.73);
(2)若要甲樓的影子剛好不落在乙樓的墻上,此時(shí)太陽與水平線的夾角為多少度?
【答案】(1)12.7(2)當(dāng)太陽光與水平線夾角為45°時(shí),甲樓的影子剛好不落在乙樓的墻上
【解析】試題分析:(1)通過投影的知識(shí)結(jié)合題意構(gòu)造直角三角形Rt△BEF,設(shè)BF=x,解此直角三角形可得x的值;由此可得EC的數(shù)值,即甲樓的影子在乙樓上有多高;
(2)要甲樓的影子剛好不落在乙樓的墻上,易得△ABC為等腰三角形,且AC=30m,容易求得當(dāng)太陽光與水平線夾角為45°時(shí),甲樓的影子剛好不落在乙樓的墻上.
試題解析:解:(1)如圖,延長OB交DC于E,作EF⊥AB,交AB于F.在Rt△BEF中,∵EF=AC=30m,∠FEB=30°,∴BE=2BF.
設(shè)BF=x,則BE=2x.根據(jù)勾股定理知:BE2=BF2+EF2,∴(2x)2=x2+302,∴(負(fù)值舍去),∴x≈17.3(m).因此,EC=30﹣17.3=12.7(m).
(2)當(dāng)甲幢樓的影子剛好落在點(diǎn)C處時(shí),△ABC為等腰三角形,因此,當(dāng)太陽光與水平線夾角為45°時(shí),甲樓的影子剛好不落在乙樓的墻上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場都讓利酬賓,其中甲商場所有商品按8折出售,乙商場對(duì)一次購物中超過200元后的價(jià)格部分打7折.
(1)以x(單位:元)表示商品原價(jià),y(單位:元)表示購物金額,分別就兩家商場的讓利方式寫出y關(guān)于x的函數(shù)解析式;
(2)在同一直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;
(3)春節(jié)期間如何選擇這兩家商場去購物更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)到點(diǎn),點(diǎn)的距離相等,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為()秒.
(1)點(diǎn)表示的數(shù)是 .
(2)點(diǎn)表示的數(shù)是 .(用含有的代數(shù)式表示);
(3)求當(dāng)等于多少秒時(shí),點(diǎn)與點(diǎn)之間的距離為個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(2,0), B(0,4).
(1)求直線AB的解析式;
(2)若點(diǎn)M為直線y=mx在第一象限上一點(diǎn),且△ABM是等腰直角三角形,求m的值.
(3)如圖3,過點(diǎn)A(2,0)的直線交y軸負(fù)半軸于點(diǎn)P,N點(diǎn)的橫坐標(biāo)為-1,過N點(diǎn)的直線交AP于點(diǎn)M.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=x-2y,B=-x-4y+1.
(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示)
(2)當(dāng)與互為相反數(shù)時(shí),求(1)中代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一列數(shù)中,已知,當(dāng)時(shí),(符號(hào)表示不超過的最大整數(shù),例如,則等于( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,任意四邊形ABCD各邊中點(diǎn)分別是E,F,G,H,若對(duì)角線AC=BD ,判斷四邊形EFGH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com