【題目】如圖,在平行四邊形ABCD中,E、 F分別為邊AB、CD的中點,BD是對角線.過點有作AG∥DB交CB的延長線于點G.
(1)求證:△ADE≌△CBF;
(2)若∠G=90° ,求證:四邊形DEBF是菱形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)已知條件證明AE=CF,從而根據(jù)SAS可證明兩三角形全等;
(2)先證明DE=BE,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,∠A=∠C,
∵點E、F分別是AB、CD的中點,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
∵,
∴△ADE≌△CBF(SAS);
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四邊形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E為AB的中點,
∴AE=BE=DE,
∵DF∥BE,DF=BE,
∴四邊形DEBF是平行四邊形,
∴四邊形DEBF是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運(yùn)動,(如圖2);當(dāng)點P運(yùn)動到原點O時,直線DE與點P都停止運(yùn)動,連DP,若點P運(yùn)動時間為t秒;設(shè)s=,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)b,C點表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù) 表示的點重合.
(3) 點A,B,C開始在數(shù)軸上運(yùn)動,若點A以每秒1個單位長度的速度向左運(yùn)動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運(yùn)動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】檢修小組從A地出發(fā),在東西路上檢修線路,若規(guī)定向東行駛的路程為正數(shù),向西行駛的路程為負(fù)數(shù),一天中行駛記錄(單位;千米)如下:
(1)收工時檢修小組在A地的哪側(cè),距A地多遠(yuǎn)?
(2)若每千米耗油0.3升,從出發(fā)到收工共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y= x+6的圖象與x軸、y軸分別交于A、B兩點,點C與點A關(guān)于y軸對稱.動點P、Q分別在線段AC、AB上(點P與點A、C不重合),且滿足∠BPQ=∠BAO。
(1)求點A、 B的坐標(biāo)及線段BC的長度;
(2)當(dāng)點P在什么位置時,△APQ≌△CBP,說明理由;
(3)當(dāng)△PQB為等腰三角形時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報告,yA、yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)
(1)求正比例函數(shù)和二次函數(shù)的解析式;
(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD交于點O,E,F分別是邊BC,AD的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C在矩形的邊上運(yùn)動,運(yùn)動到點C停止,點M為圖1中某一定點,設(shè)點P運(yùn)動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示.則點M的位置可能是圖1中的( 。
A. 點CB. 點OC. 點ED. 點F
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:探究一次函數(shù)y=kx+k+2(k是不為0常數(shù))圖象的共性特點,探究過程:小明嘗試把x=-1代入時,發(fā)現(xiàn)可以消去k,竟然求出了y=2.老師問:結(jié)合一次函數(shù)圖象,這說明了什么?小組討論得出:無論k取何值,一次函數(shù)y=kx+k+2的圖象一定經(jīng)過定點(-1,2),老師:如果一次函數(shù)的圖象是經(jīng)過某一個定點的直線,那么我們把像這樣的一次函數(shù)的圖象定義為“點旋轉(zhuǎn)直線”.已知一次函數(shù)y=(k+3)x+(k-1)的圖象是“點旋轉(zhuǎn)直線”
(1)一次函數(shù)y=(k+3)x+(k-1)的圖象經(jīng)過的定點P的坐標(biāo)是__________.
(2)已知一次函數(shù)y=(k+3)x+(k-1)的圖象與x軸、y軸分別相交于點A、B
①若△OBP的面積為3,求k值;
②若△AOB的面積為1,求k值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com