【題目】已知二次函數(shù)的圖象的頂點(diǎn)為A(2,-2),并且經(jīng)過B(1,0),C(3,0),求這條拋物線的函數(shù)表達(dá)式.

【答案】y=2x2-8x+6.

【解析】

由于二次函數(shù)的圖象的頂點(diǎn)為A(2,-2),可設(shè)二次函數(shù)的表達(dá)式為y=a(x-2)2-2;

再運(yùn)用圖象經(jīng)過點(diǎn)B(1,0),,C(3,0),將點(diǎn)B或者點(diǎn)C的坐標(biāo)代入所設(shè)函數(shù)表達(dá)式即可求出a的值,進(jìn)而求解,或者設(shè)一般式,把三個(gè)點(diǎn)的坐標(biāo)帶入求值即可.

解:解法1:設(shè)二次函數(shù)表達(dá)式為y=ax2+bx+c,將A(2,-2),B(1,0),C(3,0)代入,得

解得 所以y=2x2-8x+6.

解法2:設(shè)二次函數(shù)表達(dá)式為y=a(x-2)2-2,將B(1,0)代入,得0=a(1-2)2-2,解得a=2.所以y=2(x-2)2-2,即y=2x2-8x+6.

解法3:設(shè)二次函數(shù)表達(dá)式為y=a(x-1)(x-3),將A(2,-2)代入,得-2=a(2-1)(2-3),解得a=2.所以y=2(x-1)(x-3),即y=2x2-8x+6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)二次函數(shù)的圖象,頂點(diǎn)是原點(diǎn)O,且過點(diǎn)A(2,1),

(1)求出二次函數(shù)的表達(dá)式;

(2)我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),請(qǐng)用整數(shù)n表示這條拋物線上所有的整點(diǎn)坐標(biāo).

(3)過y軸的正半軸上一點(diǎn)C(0,a)作AO的平行線交拋物線于點(diǎn)B,

①求出直線BC的函數(shù)表達(dá)式(用a表示);

②如果點(diǎn)B是整點(diǎn),求證:OAB的面積是偶數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)用配方法解方程x2+axb2時(shí),方程的兩邊加上_____,據(jù)歐幾里得的《原本》記載,形如x2+axb2的方程的圖解法是:畫Rt△ABC,使∠ACB=90°,BC,ACb,再在斜邊AB上截取BD.則該方程的一個(gè)正根是線段_____的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結(jié)構(gòu)性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO 1.2 米,當(dāng)車門打開角度∠AOB40°時(shí),車門是否會(huì)碰到墻?請(qǐng)說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax+c2的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利的情況如下表所示:

銷售方式

粗加工后銷售

精加工后銷售

每噸獲利()

1000

2000

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷售完.

1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?

2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.

試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關(guān)系式;

若要求在不超過10天的時(shí)間內(nèi),將140噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤?此時(shí)如何分配加工時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點(diǎn),且滿足∠BAC=∠APC=60°,

(1)求證:△ABC是等邊三角形;

(2)求圓心O到BC的距離OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市對(duì)居民生活用水按以下規(guī)定收取每月的水費(fèi):家庭月用水量如果不超過8噸,按每噸2.5元收費(fèi);如果超過8噸,未超過的部分仍按每噸2.5元收取,而超過部分則按每噸4元收取.

1)設(shè)某家庭月用水量為x噸,水費(fèi)為y元,請(qǐng)寫出yx之間的函數(shù)解析式,并在給定的平面直角坐標(biāo)系中,畫出該函數(shù)的圖象;

2)如果小明家按題中規(guī)定今年3月份應(yīng)繳水費(fèi)34元,那么今年3月份小明家用水多少噸?

查看答案和解析>>

同步練習(xí)冊(cè)答案