【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②3a+c>0;
③方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
④當(dāng)y>3時(shí),x的取值范圍是0≤x<2;
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
利用拋物線與x軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;由對(duì)稱軸方程得到b=﹣2a,然后根據(jù)x=﹣1時(shí)函數(shù)值為0可得到3a+c=0,則可對(duì)②進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在x軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.
解:∵拋物線與x軸有2個(gè)交點(diǎn),
∴b2﹣4ac>0,所以①正確;
∵x==1,即b=﹣2a,
而x=﹣1時(shí),y=0,即a﹣b+c=0,
∴a+2a+c=0,
所以②錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=1,
而點(diǎn)(﹣1,0)關(guān)于直線x=1的對(duì)稱點(diǎn)的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3,
所以③正確;
根據(jù)對(duì)稱性,由圖象知,
當(dāng)0<x<2時(shí),y>3,所以④錯(cuò)誤;
∵拋物線的對(duì)稱軸為直線x=1,
∴當(dāng)x<1時(shí),y隨x增大而增大,所以⑤正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸交于點(diǎn)M.
(1)求此拋物線的解析式和對(duì)稱軸;
(2)在此拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接AC,在直線AC下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售部有營業(yè)員人,某一月的銷售量統(tǒng)計(jì)如下表所示:
公司名營業(yè)員某一月的銷售量統(tǒng)計(jì)表
月銷售量/件數(shù) | 1770 | 480 | 220 | 180 | 120 | 90 |
人數(shù) | 1 | 1 | 3 | 3 | 3 | 4 |
(1)求這名營業(yè)員該月銷售量數(shù)據(jù)的平均數(shù);
(2)這名營業(yè)員該月銷售量數(shù)據(jù)的中位數(shù)是 件,眾數(shù)是 件,為了提高大多數(shù)營業(yè)員的積極性,實(shí)行“每天定額售量,超出有獎(jiǎng)”的措施.如果你是管理者,你選擇.確定“定額”的統(tǒng)計(jì)量為 (填“中位數(shù)”或“眾數(shù)”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某湖邊健身步道全長1500米,甲、乙兩人同時(shí)從同一起點(diǎn)勻速向終點(diǎn)步行.甲先到達(dá)終點(diǎn)后立刻返回,在整個(gè)步行過程中,甲、乙兩人間的距離y(米)與出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中OA﹣AB折線所示.
(1)用文字語言描述點(diǎn)A的實(shí)際意義;
(2)求甲、乙兩人的速度及兩人相遇時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC=,∠B=30°,點(diǎn)O為邊BC上一點(diǎn)以O為圓心的圓經(jīng)過點(diǎn)A,B.
(1)求作圓O(尺規(guī)作圖,保留作留痕跡,不寫作法);
(2)求證:AC是OO的切線;
(3)若點(diǎn)P為圓O上一點(diǎn),且弧PA=弧PB,連接PC,求線段PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列函數(shù)圖象上任取不同兩點(diǎn)P1(x1,y1)、P2(x2,y2),一定能使<0成立的是( )
A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)
C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com