【題目】如圖,是的直徑,弦于點(diǎn),交于點(diǎn),連結(jié)、、,若.
求證:直線為的切線;
若,,求線段的長.
【答案】(1)見解析;(2)
【解析】
(1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;
(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長.
(1)連接OC.
∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC.
又∵∠CFD=∠BFO,∴∠DCB=∠BOF.
∵CO=BO,∴∠OCF=∠B.
∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線CD為⊙O的切線;
(2)連接AC.
∵AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=∠ACB.
又∵∠D=∠B,∴△OCD∽△ACB.
∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴=,即=,解得:DC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有若干個(gè)邊長為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形Ⅰ的中心O1,如圖所示,類似的正方形Ⅲ的一個(gè)頂點(diǎn)是正方形Ⅱ的中心O2,并且正方形Ⅰ與正方形Ⅲ不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對稱軸為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學(xué)委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?
(2)若該中學(xué)要購進(jìn)“最美東營人”和“最美志愿者”兩款文化衫共90件,總費(fèi)用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學(xué)有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊿ABC中,∠B = 50,∠C = 70,AD是高,AE是角平分線,
(1)∠BAC=__________,∠DAC=__________.(填度數(shù))
(2)求∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在中,,以為直徑作分別交,于,兩點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn).下列結(jié)論:
①;②兩段劣弧=;③與相切;④.
其中一定正確的有( )個(gè).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為6;③∠AOB=150°;④S△BOC=12+6; ⑤S四邊形AOBO′=24+12.其中正確的結(jié)論是_____.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是線段AB上的一個(gè)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點(diǎn)P,C,E在一條直線上,點(diǎn)M,N分別是對角線AC,BE的中點(diǎn),連接MN,PM,PN,若∠DAP=60°,AP2+3PB2=2,則線段MN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AD=12,G是BC的中點(diǎn).將△ABG沿AG對折至△AFG,延長GF交DC于點(diǎn)E,則DE的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com