【題目】如圖,的直徑,于點(diǎn),交于點(diǎn),連結(jié)、,若

求證:直線的切線;

,,求線段的長.

【答案】(1)見解析;(2)

【解析】

1)利用圓周角定理結(jié)合等腰三角形的性質(zhì)得出∠OCF+∠DCB=90°,即可得出答案;

2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質(zhì)得出DC的長

1)連接OC

∵∠CEA=CBA,AEC=ODC,∴∠CBA=ODC

又∵∠CFD=BFO,∴∠DCB=BOF

CO=BO,∴∠OCF=B

∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線CD為⊙O的切線;

2)連接AC

AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=ACB

又∵∠D=B,∴△OCD∽△ACB

∵∠ACB=90°,AB=5,BC=4,AC=3,=,=,解得DC=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有若干個(gè)邊長為2的正方形,若正方形的一個(gè)頂點(diǎn)是正方形的中心O1,如圖所示,類似的正方形的一個(gè)頂點(diǎn)是正方形的中心O2,并且正方形與正方形不重疊,如果若干個(gè)正方形都按這種方法拼接,需要m個(gè)正方形能使拼接處的圖形的陰影部分的面積等于一個(gè)正方形的面積.現(xiàn)有一拋物線y=mx2+nx+3,其頂點(diǎn)在x軸上,則該拋物線的對稱軸為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學(xué)委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.

(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?

(2)若該中學(xué)要購進(jìn)“最美東營人”和“最美志愿者”兩款文化衫共90件,總費(fèi)用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學(xué)有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿ABC中,∠B = 50,∠C = 70,AD是高,AE是角平分線,

1∠BAC=__________,∠DAC=__________.(填度數(shù))

2)求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在中,,以為直徑作分別交,,兩點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn).下列結(jié)論:

;②兩段劣弧=;相切;④

其中一定正確的有(個(gè)

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若AE=1,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是正ABC內(nèi)一點(diǎn),OA6,OB8,OC10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)OO的距離為6;③∠AOB150°;④SBOC12+6; S四邊形AOBO24+12.其中正確的結(jié)論是_____.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是線段AB上的一個(gè)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點(diǎn)P,C,E在一條直線上,點(diǎn)M,N分別是對角線AC,BE的中點(diǎn),連接MN,PM,PN,若∠DAP60°AP2+3PB22,則線段MN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AD=12,GBC的中點(diǎn).將△ABG沿AG對折至△AFG,延長GFDC于點(diǎn)E,則DE的長是_____

查看答案和解析>>

同步練習(xí)冊答案