已知拋物線y=﹣x2+bx+c的對稱軸為直線x=1,最小值為3,此拋物線與y軸交于點A,頂點為B,對稱軸BC與x軸交于點C.
1.(1)求拋物線的解析式.
2.(2)如圖1.求點A的坐標(biāo)及線段OC的長;
3.(3)點P在拋物線上,直線PQ∥BC交x軸于點Q,連接BQ.
①若含45°角的直角三角板如圖2所示放置.其中,一個頂點與點C重合,直角頂點D在BQ上,另一 個頂點E在PQ上.求直線BQ的函數(shù)解析式;
②若含30°角的直角三角板一個頂點與點C重合,直角頂點D在直線BQ上,另一個頂點E在PQ上,求點P的坐標(biāo).
1.解:(1)∵拋物線y=﹣x2+bx+c的對稱軸為直線x=1
∴2b=1,∴b=
又∵拋物線最小值為3
∴3=-,∴c=
∴拋物線解析式為:
2.2)把x=0代入拋物線得:y=,
∴點A(0,).--------------------------------------3分
∵拋物線的對稱軸為x=1,
∴OC=1.
3.(3)①如圖:∵此拋物線與y軸交于點A,頂點為B
∴B(1,3)
分別過點D作DM⊥x軸于M,DN⊥PQ于點N,
∵PQ∥BC,∴∠DMQ=∠DNQ=∠MQN=90°,
∴DMQN是矩形.
∵△CDE是等腰直角三角形,
∴DC=DE,∠CDM=∠EDN
∴△CDM≌△EDN
∴DM=DN,
∴DMQN是正方形,
∴∠BQC=45°
∴CQ=CB=3
∴Q(4,0)
設(shè)BQ的解析式為:y=kx+b,
把B(1,3),Q(4,0)代入解析式得:k=﹣1,b=4.
所以直線BQ的解析式為:y=﹣x+4.-------------------------------6分
②所求的點P的坐標(biāo)為:P1(1+,),P2(1+3,﹣),P3(1﹣,),
P4(1﹣3,﹣).
解析:略
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com