我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元∕件)30405060
每天銷售量y(件)500400300200
(1)猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,試銷該工藝品每天獲得的利潤最大?最大利潤是多少?
(3)銷售部門規(guī)定該工藝品單價不得超過48元,要想每天獲得8750元利潤,單價應定為多少元?
【答案】分析:(1)首先描點,由圖可猜想y與x是一次函數(shù)關(guān)系,任選兩點求表達式,再驗證猜想的正確性;
(2)根據(jù)總利潤=銷售總價-成本總價=單件利潤×銷售量.據(jù)此得表達式,運用性質(zhì)求最值;
(3)根據(jù)要想每天獲得8750元利潤,得出一元二次方程進而求出即可.
解答:解:(1)將各點在坐標系中描出,由圖可猜想y與x是一次函數(shù)關(guān)系,
設(shè)這個一次函數(shù)為y=kx+b(k≠0),
∵這個一次函數(shù)的圖象經(jīng)過(30,500)、(40,400)這兩點,

解得:,
故函數(shù)關(guān)系式是:y=-10x+800.

(2)設(shè)該廠試銷該小鏡子每天獲得的利潤是W元,
依題意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000
當x=50時,W有最大值9000元.
所以,當銷售單價定為50元∕個時,該廠試銷小鏡子每天獲得的利潤最大,最大利潤是9000元.

(3)要想每天獲得8750元利潤,則8750=-10(x-50)2+9000,
整理得出:(x-50)2=25,
解得:x1=55,x2=45,
∵銷售部門規(guī)定該工藝品單價不得超過48元,
∴55不合題意舍去,
答:要想每天獲得8750元利潤,單價應定為45元.
點評:此題考查了二次函數(shù)的性質(zhì)及其應用,要運用圖表中的信息,學會用待定系數(shù)法求解函數(shù)解析式并將實際問題轉(zhuǎn)化為求函數(shù)最值問題,從而來解決實際問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?
(利潤=銷售總價-成本總價);
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣東模擬)我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元∕件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,試銷該工藝品每天獲得的利潤最大?最大利潤是多少?
(3)銷售部門規(guī)定該工藝品單價不得超過48元,要想每天獲得8750元利潤,單價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年江蘇省泰州市姜堰市溱潼實驗中學九年級(上)第二次階段性練習(解析版) 題型:解答題

我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省黃岡市中考適應性考試數(shù)學試卷(十四)(解析版) 題型:解答題

我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

同步練習冊答案