【題目】如圖,在平面直角坐標(biāo)系中,已知,,點(diǎn)點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng);點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)的速度移動(dòng),如果、同時(shí)出發(fā),用表示移動(dòng)的時(shí)間,那么:

1)設(shè)的面積為,求關(guān)于的函數(shù)解析式.

2)當(dāng)的面積最大時(shí),沿直線翻折后得到,試判斷點(diǎn)是否落在直線上,并說(shuō)明理由.

3)當(dāng)為何值時(shí),相似?

【答案】1;(2)點(diǎn)不落在直線上,理由見(jiàn)解析;(3)當(dāng)時(shí),相似.

【解析】

1)根據(jù)PQ的速度,用時(shí)間t表示出OQOP的長(zhǎng),即可通過(guò)三角形的面積公式得出yt的函數(shù)關(guān)系式;

2)先根據(jù)(1)的函數(shù)式求出y最大時(shí),x的值,即可得出OQOP的長(zhǎng),然后求出C點(diǎn)的坐標(biāo)和直線AB的解析式,將C點(diǎn)坐標(biāo)代入直線AB的解析式中即可判斷出C是否在AB上;

3)本題要分△OPQ∽△OAB△OPQ∽△OBA兩種情況進(jìn)行求解,可根據(jù)各自得出的對(duì)應(yīng)邊成比例求出t的值.

1

由題意,得

,

2

當(dāng)有最大值時(shí),

是等腰直角三角形.

沿翻折后,可得四邊形是正方形,如圖所示,

點(diǎn)的坐標(biāo)是

,,

直線的解析式為

當(dāng)時(shí),

點(diǎn)不落在直線.

3△OPQ∽△OAB,則有

,

.

△OPQ∽△OBA ,則有,

,

.

當(dāng)時(shí),相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為5,點(diǎn)E、F分別在BCCD邊上,分別連接AE、AF、EF,若∠EAF45°,則△CEF的周長(zhǎng)是( 。

A.6+2B.8.5C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)分別在上,,,,交于點(diǎn).

1)求證:;

2)連接,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,線段AB的端點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出以AB為底的等腰三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且△ABC的面積是7.5;

2)在(1)的條件下,在圖中畫(huà)出以AC為斜邊的直角三角形ACEAEEC),點(diǎn)E在小正方形的頂點(diǎn)上,且△ACE的面積是5,連接EB,并直接寫(xiě)出tanAEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A0,4),B2,2),C4,6)(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1

1)畫(huà)出△ABC向下平移5個(gè)單位得到的△A1B1C1,并寫(xiě)出點(diǎn)B1的坐標(biāo);

2)以點(diǎn)O為位似中心,在第三象限畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為12,直接寫(xiě)出點(diǎn)C2的坐標(biāo)和△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yx2bxc過(guò)點(diǎn)A(3, 0)、點(diǎn)B(0, 3).點(diǎn)M(m, 0)在線段OA上(與點(diǎn)AO不重合),過(guò)點(diǎn)Mx軸的垂線與線段AB交于點(diǎn)P,與拋物線交于點(diǎn)Q,聯(lián)結(jié)BQ

1)求拋物線表達(dá)式;

2)聯(lián)結(jié)OP,當(dāng)∠BOP=∠PBQ時(shí),求PQ的長(zhǎng)度;

3)當(dāng)PBQ為等腰三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角ABC中,∠ABC90°,點(diǎn)PAC上,將ABP繞頂點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CBQ

1)求∠PCQ的度數(shù);

2)當(dāng)AB4,AP時(shí),求PQ的大;

3)當(dāng)點(diǎn)P在線段AC上運(yùn)動(dòng)時(shí)(P不與A,C重合),求證:2PB2PA2+PC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙Ay軸相切于點(diǎn)B0),與x軸相交于M,N兩點(diǎn),如果點(diǎn)M的坐標(biāo)為(0),求點(diǎn)N的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,給出如下定義:若點(diǎn)在圖形上,點(diǎn)在圖形上,如果兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形近距離,記為.特別地,當(dāng)圖形與圖形有公共點(diǎn)時(shí),.

已知,,,

1點(diǎn),點(diǎn) ,點(diǎn),線段 ;

2)⊙半徑為

①當(dāng)時(shí),求⊙與線段近距離,線段

②若,,則 .

3軸上一點(diǎn),⊙的半徑為1,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),⊙近距離,請(qǐng)直接寫(xiě)出圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案