【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的邊與函數(shù)y=(x>0)圖象交于E,F(xiàn)兩點(diǎn),且F是BC的中點(diǎn),則四邊形ACFE的面積等于( 。
A. 4 B. 6 C. 8 D. 不能確定
【答案】B
【解析】
由四邊形OABC是矩形,F是BC的中點(diǎn),可設(shè)F(m,n),則B(m,2n),又E點(diǎn)在拋物線上,則E(,2n).可以用含m,n的式子表示出矩形OABC,三角形AOC和三角形BEF的面積.F在反比例函數(shù)的圖形上可得到mn的關(guān)系,
再依據(jù)S四邊形ACFE =S矩形OABC-S△AOC-S△BEF.即可求.
解:∵邊形OABC是矩形,F(xiàn)是BC的中點(diǎn),
∴可設(shè)F(m,n),則B(m,2n),又E點(diǎn)在拋物線上,則E(,2n),
∵F在拋物線上,
∴mn=8,
∵F(m,n),B(m,2n), E(,2n),
∴OA=2n,AB=OC=m,AE=,BF=n,
∴S矩形OABC=2mn,
S△AOC =×OA×OC==×2n×m=mn,
S△BEF =×BE×BF=×(m-)×n=mn-4,
∵S四邊形ACFE =S矩形OABC-S△AOC-S△BEF,
∴S四邊形ACFE =2mn-mn-(mn-4)=mn+2,
∵mn=8,
∴S四邊形ACFE =mn+2=6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的大;
(2)若CD=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、c是Rt△ABC和Rt△BED邊長,易知AE=c,這時我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
寫出一個“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點(diǎn)D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時,條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮構(gòu)造以該中點(diǎn)為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個三角形中,從而解決問題.
(2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關(guān)系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點(diǎn),DM⊥DN,DM交AB于點(diǎn)M,DN交AC于點(diǎn)N,連接MN.當(dāng)BM=4,MN=5,AC=6時,請直接寫出中線AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+2與x軸,y軸分別交于點(diǎn)A(﹣1,0)和點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點(diǎn)C(1,n).
(1)求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達(dá)式;
(2)過x軸上的點(diǎn)D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點(diǎn),且PQ=2QD,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,AB=4,點(diǎn)E,F在對角線BD上,AE∥CF.
(1)求證:△ABE≌△CDF;
(2)若∠ABE=2∠BAE,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一,下列圖表中的數(shù)據(jù)是運(yùn)動員甲、乙、丙三人每人10次墊球測試的成績,測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分,已知運(yùn)動員甲測試成績的中位數(shù)和眾數(shù)都是7.
運(yùn)動員甲測試成績統(tǒng)計(jì)表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要從他們?nèi)酥羞x擇一位墊球較為穩(wěn)定的接球能手,你認(rèn)為選誰更合適?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com