【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且cos∠α=,下列結論:①△ADE∽△ACD;②當BD=6時,△ABD與△DCE全等;③△DCE為直角三角形時,BD為8或;④0<CE≤6.4.其中正確的結論是_________.(把你認為正確結論的序號都填上)
【答案】①②④
【解析】
①根據有兩組對應角相等的三角形相似即可證明;②由BD=6,則DC=10,然后根據有兩組對應角相等且夾邊也相等的三角形全等,即可證得;③分兩種情況討論,通過三角形相似即可求得;④依據相似三角形對應邊成比例即可求得.
解:①∵AB=AC,
∴∠B=∠C,
又∵∠ADE=∠B,
∴∠ADE=∠C,
∴△ADE∽△ACD,故①正確;
②作AG⊥BC于G,
∵AB=AC=10,∠ADE=∠B=α,cosα=,
∴BG=ABcosB,
∴BC=2BG=2ABcosB=2×10×=16,
∵BD=6,
∴DC=10,
∴AB=DC,
在△ABD與△DCE中,
∴△ABD≌△DCE(ASA),故②正確;
③當∠AED=90°時,由①可知:△ADE∽△ACD,
∴∠ADC=∠AED,
∵∠AED=90°,
∴∠ADC=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且cosα=,AB=10,BD=8,
當∠CDE=90°時,易△CDE∽△BAD,
∵∠CDE=90°,
∴∠BAD=90°,
∵∠B=α且cosα=,AB=10,
∴cosB==,
∴BD=,故③錯誤;
④易證得△CDE∽△BAD,由②可知BC=16,
設BD=y,CE=x,
∴,
∴,
整理得:y216y+64=6410x,
即(y8)2=6410x,
∴0<x≤6.4,故④正確;
故答案為:①②④.
科目:初中數學 來源: 題型:
【題目】小明為探究函數的圖象和性質,需要畫出函數圖象,列表如下:
…… | …… | |||||||||||
…… | …… |
根據上表數據,在平面直角坐標系中描點,畫出函數圖象,如圖如示,小明畫出了圖象的一部分.
(1)請你幫小明畫出完整的的圖象;
(2)觀察函數圖象,請寫出這個函數的兩條性質:
性質一: ;
性質二: .
(3)利用上述圖象,探究函數圖象與直線的關系;
①當 時, 直線與函數在第一象限的圖象有一個交點,則的坐標是 ;
②當為何值時,討論函數的圖象與直線的交點個數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是( )
A.等腰梯形B.矩形C.菱形D.正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸的交點為,與軸的交點分別為,,且,直線軸,在軸上有一動點過點作平行于軸的直線與拋物線、直線的交點分別為、.
求拋物線的解析式;
當時,求面積的最大值;
當時,是否存在點,使以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小東同學根據函數的學習經驗,對函數y 進行了探究,下面是他的探究過程:
(1)已知x=-3時 0;x=1 時 0,化簡:
①當x<-3時,y=
②當-3≤x≤1時,y=
③當x>1時,y=
(2)在平面直角坐標系中畫出y 的圖像,根據圖像,寫出該函數的一條性質.
(3)根據上面的探究解決,下面問題:
已知A(a,0)是x軸上一動點,B(1,0),C(-3,0),則AB+AC的最小值是
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】春秋旅行社為吸引市民組團去天水灣風景區(qū)旅游,推出了如下收費標準:
某單位組織員工去天水灣風景區(qū)旅游,共支付給春秋旅行社旅游費用27000元,請問該單位這次共有多少員工去天水灣風景區(qū)旅游?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面上,邊長為的正方形和短邊長為的矩形幾何中心重合,如圖①,當正方形和矩形都水平放置時,容易求出重疊面積.
甲、乙、丙三位同學分別給出了兩個圖形不同的重疊方式;
甲:矩形繞著幾何中心旋轉,從圖②到圖③的過程中,重疊面積大小不變.
乙:如圖④,矩形繞著幾何中心繼續(xù)旋轉,矩形的兩條長邊與正方形的對角線平行時,此時的重疊面積大于圖③的重疊面積.
丙:如圖⑤,將圖④中的矩形向左上方平移,使矩形的一條長邊恰好經過正方形的對角線,此時的重疊面積是個圖形中最小的.
下列說法正確的是( )
A.甲、乙、丙都對B.只有乙對C.只有甲不對D.甲、乙、丙都不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與軸交于A,B兩點(點A在點B左側)
(1)求拋物線的頂點坐標(用含的代數式表示);
(2)求線段AB的長;
(3)拋物線與軸交于點C(點C不與原點重合),若的面積始終小于的面積,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數解析式為y=mx2﹣2mx+m﹣,二次函數與x軸交于A、B兩點(B在A右側),與y軸交于C點,二次函數頂點為M.已知∠OMB=90°.
①求頂點坐標.
②求二次函數解析式.
③N為線段BM中點,在二次函數的對稱軸上是否存在一點P,使得∠PON=60°,若存在求出點P坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com