【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,…,如此作下去,則△B2015A2016B2016的頂點A2016的坐標(biāo)是

【答案】(4031,﹣
【解析】解:∵△OA1B1是邊長為2的等邊三角形,
∴A1的坐標(biāo)為(1, ),B1的坐標(biāo)為(2,0),
∵△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,
∴點A2與點A1關(guān)于點B1成中心對稱,
∵2×2﹣1=3,2×0﹣ =﹣ ,
∴點A2的坐標(biāo)是(3,﹣ ),
∵△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,
∴點A3與點A2關(guān)于點B2成中心對稱,
∵2×4﹣3=5,2×0﹣(﹣ )=
∴點A3的坐標(biāo)是(5, ),
∵△B3A4B4與△B3A3B2關(guān)于點B3成中心對稱,
∴點A4與點A3關(guān)于點B3成中心對稱,
∵2×6﹣5=7,2×0﹣ =﹣ ,
∴點A4的坐標(biāo)是(7,﹣ ),
…,
∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,
∴An的橫坐標(biāo)是2n﹣1,
當(dāng)n為奇數(shù)時,An的縱坐標(biāo)是 ,當(dāng)n為偶數(shù)時,An的縱坐標(biāo)是﹣ ,
∴△B2015A2016B2016的頂點A2016的坐標(biāo)是(4031,﹣ ),
故答案為:(4031,﹣ ).
首先根據(jù)△OA1B1是邊長為2的等邊三角形,可得A1的坐標(biāo)為(1, ),B1的坐標(biāo)為(2,0);然后根據(jù)中心對稱的性質(zhì),分別求出點A2、A3、A4的坐標(biāo)各是多少;最后總結(jié)出An的坐標(biāo)的規(guī)律,求出A2016的坐標(biāo)是多少即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣3,0),(3,0),點P在反比例函數(shù)y=的圖象上,若△PAB為直角三角形,則滿足條件的點P的個數(shù)為(  )
A.2個
B.4個
C.5個
D.6個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:

(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C

(1)求A、B、C的坐標(biāo);
(2)過拋物線上一點F作y軸的平行線,與直線AC交于點G.若FG= AC,求點F的坐標(biāo);
(3)E(0,﹣2),連接BE.將△OBE繞平面內(nèi)的某點逆時針旋轉(zhuǎn)90°得到△O′B′E′,O、B、E的對應(yīng)點分別為O′、B′、E′.若點B′、E′兩點恰好落在拋物線上,求點B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為(

A.3
B.4
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.

(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點,其中點A(﹣1,0),點C(0,5),點D(1,8)都在拋物線上,M為拋物線的頂點.

(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為M的拋物線y=a(x+1)2﹣4分別與x軸相交于點A,B(點A在點B的右側(cè)),與y軸相交于點C(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(點N與點M不重合),使得以點A,B,C,N為頂點的四邊形的面積與四邊形ABMC的面積相等?若存在,求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過 上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG= ,AH=3 ,求EM的值.

查看答案和解析>>

同步練習(xí)冊答案