【題目】觀察下列方程的特征及其解的特點.
①x+=-3的解為x1=-1,x2=-2;
②x+=-5的解為x1=-2,x2=-3;
③x+=-7的解為x1=-3,x2=-4.
解答下列問題:
(1)請你寫出一個符合上述特征的方程為____________,其解為x1=-4,x2=-5;
(2)根據(jù)這類方程特征,寫出第n個方程為________________,其解為x1=-n,x2=-n-1;
(3)請利用(2)的結(jié)論,求關(guān)于x的方程x+=-2(n+2)(其中n為正整數(shù))的解.
【答案】(1) x1=-4,x2=-5;(2)x1=-n,x2=-n-1;(3) x1=-n-3,x2=-n-4
【解析】試題分析:觀察方程特點,可以得到數(shù)據(jù)的關(guān)系.
試題解析:
(1)x+=-9 x1=-4,x2=-5;
(2)x+=-(2n+1)
x1=-n,x2=-n-1;
(3)解:x+=-2(n+2),
x+3+=-2(n+2)+3,
(x+3)+=-(2n+1),
∴x+3=-n或x+3=-n-1,
即x1=-n-3,x2=-n-4.
檢驗:當(dāng)x=-n-3時,x+3=-n≠0,
當(dāng)x=-n-4時,x+3=-n-1≠0,
∴原分式方程的解是x1=-n-3,x2=-n-4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次物理競賽中,有一道四選二的雙項選擇題,評分標(biāo)準(zhǔn)是:多選或只要選錯一項就不得分,只選一項且對得1分,全對得3分.
(1)小娟在不會做的情況下,根據(jù)題意決定任選一項作為答案,求她得到1分的概率.
(2)小娜在不會做的情況下,根據(jù)題意決定任選兩項作答案,用列表法表示小娜答案的所有可能結(jié)果,并求她得到3分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于底面上一點).已知E、F在AB邊上,是被剪去一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=xcm.
(1)若折成的包裝盒恰好是正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi),正方形ABCD與正方形CEFH如圖放置,連接DE,BH,兩線交于M,求證:
(1)BH=DE;
(2)BH⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖ΔABC中,∠B =∠C,BD=CF,BE=CD,∠EDF=α,則下列結(jié)論正確的是( )
A. 2α+∠A=90° B. 2α+∠A=180°
C. α+∠A=90° D. α+∠A=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,(1)已知∠ABC,射線ED∥AB,過點E作∠DEF=∠ABC,試說明BC∥EF;
(2)如圖②,已知∠ABC,射線ED∥AB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關(guān)系,并說明理由;
(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個什么結(jié)論?請你寫出來;
(4)如圖③,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB,若∠1=48°,試求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;
問題解決:
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)求△AOB的面積;
(3)若D(x,0)是x軸上原點左側(cè)的一點,且滿足kx+b-<0,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖像經(jīng)過點(-1.-5),且與正比例函數(shù)y=x的圖象相交于點(2,m).
(1)求m的值;
(2)求一次函數(shù)y=kx+b的解析式;
(3)求這兩個函數(shù)圖像與x軸所圍成的三角形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com