【題目】世界上大部分國家都使用攝氏溫度(),但美國、英國等國家的天氣預(yù)報(bào)仍然使用華氏溫度().兩種計(jì)量之間有如下對(duì)應(yīng):
攝氏溫度() | ||||||
華氏溫度() |
(1)上表反映了哪兩變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?
(2)由上表可得:攝氏溫度()每提高度,華氏溫度()提高_____度.
(3)攝氏溫度度時(shí)華氏溫度為______度.
(4)華氏溫度度時(shí)攝氏溫度為_______度.
(5)華氏溫度的值與對(duì)應(yīng)的攝氏溫度的值有相等的可能嗎?如果有,求出這個(gè)值.如果沒有,請(qǐng)說明理由.
【答案】(1)攝氏溫度與華氏溫度之間的關(guān)系;自變量為攝氏溫度,因變量為華氏溫度;(2);(3)度;(4);(5)攝氏溫度-40度時(shí)與華氏溫度的值相等.
【解析】
(1)根據(jù)圖表,結(jié)合函數(shù)的定義解答即可;(2)根據(jù)華氏溫度的變化計(jì)算即可得答案;(3)根據(jù)(2)中所得結(jié)論計(jì)算即可;(4)根據(jù)(2)中所得結(jié)論計(jì)算即可;(5)由(2)中結(jié)論可得攝氏溫度與華氏溫度之間的關(guān)系式,代入x=y,即可求出x的值,可得答案.
(1)上表反映了攝氏溫度與華氏溫度之間的關(guān)系;自變量為攝氏溫度,因變量為華氏溫度.
(2)50-32=18,
∴攝氏溫度()每提高10度,華氏溫度()提高18度.
(3)(18÷10)×100+32=212.
∴攝氏溫度度時(shí)華氏溫度為212度.
(4)(-4-32)÷(18÷10)=20,
∴華氏溫度度時(shí)攝氏溫度為20度.
(5)∵攝氏溫度()每提高度,華氏溫度()提高18度,攝氏溫度0度時(shí),華氏溫度為32度,
∴華氏溫度的值與對(duì)應(yīng)的攝氏溫度的關(guān)系式為y=1.8x+32,
∵x=y,
∴x=1.8x+32,
解得:x=-40,
∴攝氏溫度-40度時(shí)與華氏溫度的值相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作矩形”的尺規(guī)作圖過程,已知:
求作:矩形
作法:如圖,
①作線段的垂直平分線角交于點(diǎn);
②連接并延長,在延長線上截取
③連接
所以四邊形即為所求作的矩形
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程
(1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)
(2)完成下邊的證明:
證明: ,,
四邊形是平行四邊形( )(填推理的依據(jù))
四邊形是矩形( )(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖AD為△ABC的中線,分別以AB和AC為一邊在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,連接EF,∠EAF+∠BAC=180°
(1)如圖1,若∠ABE=63°,∠BAC=45°,求∠FAC的度數(shù);
(2)如圖1請(qǐng)?zhí)骄烤段EF和線段AD有何數(shù)量關(guān)系?并證明你的結(jié)論;
(3)如圖2,設(shè)EF交AB于點(diǎn)G,交AC于點(diǎn)R,延長FC,EB交于點(diǎn)M,若點(diǎn)G為線段EF的中點(diǎn),且∠BAE=70°,請(qǐng)?zhí)骄俊?/span>ACB和∠CAF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,點(diǎn)A,B,C均在格點(diǎn)上.
(1)請(qǐng)值接寫出點(diǎn)A,B,C的坐標(biāo).
(2)若平移線段AB,使B移動(dòng)到C的位置,請(qǐng)?jiān)趫D中畫出A移動(dòng)后的位置D,依次連接B,C,D,A,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一元二次方程,有下列說法:
①若,則方程必有一個(gè)根為1;
②若方程有兩個(gè)不相等的實(shí)根,則方程必有兩個(gè)不相等的實(shí)根;
③若是方程的一個(gè)根,則一定有成立;
④若是一元二次方程的根,則.
其中正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉嘉和琪琪在用一副三角尺研究數(shù)學(xué)問題:
一副三角尺分別有一個(gè)角為直角,其余角度如圖1所示,.
發(fā)現(xiàn):
(1)如圖2,當(dāng)與重合時(shí),_____.
(2)如圖3,將圖2中繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定角度使得,求的度數(shù).
拓展:
(3)如圖4,繼續(xù)旋轉(zhuǎn),使得于點(diǎn),
①此時(shí)與平行嗎?請(qǐng)說明理由.
②求的度數(shù).
探究:
(4)如圖5、圖6,繼續(xù)旋轉(zhuǎn),使得,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與⊙O相離,OA⊥于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長,交直線于點(diǎn)C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)若PC=2,OA=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用水平線和豎直線將平面分成若干個(gè)邊長為1的小正方形格子,小正方形的頂點(diǎn),叫格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形叫格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為,它各邊上格點(diǎn)的個(gè)數(shù)之和為.
探究一:圖中①—④的格點(diǎn)多邊形,其內(nèi)部都只有一個(gè)格點(diǎn),它們的面積與各邊上格點(diǎn)的個(gè)數(shù)之和的對(duì)應(yīng)關(guān)系如表:
多邊形的序號(hào) | ① | ② | ③ | ④ | … |
多邊形的面積 | 2 | 2.5 | 3 | 4 | … |
各邊上格點(diǎn)的個(gè)數(shù)和 | 4 | 5 | 6 | 8 | … |
與之間的關(guān)系式為:________.
探究二:圖中⑤—⑧的格點(diǎn)多邊形內(nèi)部都只有2個(gè)格點(diǎn),請(qǐng)你先完善下表格的空格部分(即分別計(jì)算出對(duì)應(yīng)格點(diǎn)多邊形的面積):
多邊形的序號(hào) | ⑤ | ⑥ | ⑦ | ⑧ | … |
多邊形的面積 | … | ||||
各邊上格點(diǎn)的個(gè)數(shù)和 | 4 | 5 | 6 | 8 | … |
與之間的關(guān)系式為:________.
猜想:當(dāng)格點(diǎn)多邊形內(nèi)部有且只有個(gè)格點(diǎn)時(shí),與之間的關(guān)系式為:_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com