【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設點P運動的時間是t秒.將線段CP的中點繞點P按順時針方向旋轉90°得點D,點D隨點P的運動而運動,連接DP、DA.
(1)請用含t的代數式表示出點D的坐標;
(2)求t為何值時,△DPA的面積最大,最大為多少?
(3)在點P從O向A運動的過程中,△DPA能否成為直角三角形?若能,求t的值.
若不能,請說明理由;
(4)請直接寫出隨著點P的運動,點D運動路線的長.
【答案】(1)D坐標為(t+1,);(2)當t=2時,△DPA的面積最大,最大值為1;(3)經過2秒或3秒時,△PAD是直角三角形;(4) 點D運動路線的長為.
【解析】
試題分析:(1)設出P點坐標,再求出CP的中點坐標,根據相似的性質即可求出D點坐標;
(2)根據題意求出△DPA的面積,分析函數解析式求出最值;
(3)先判斷出可能為直角的角,再根據勾股定理求解;
(4)根據點D的運動路線與OB平行且相等解答即可.
試題解析:(1)∵點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,
∴OP=t,而OC=2,
∴P(t,0),
設CP的中點為F,則F點的坐標為(,1),
∴將線段CP的中點F繞點P按順時針方向旋轉90°得點D,其坐標為(t+1,);
(2)S=
∴當t=2時,S最大,最大值為1
(3)∵∠CPD=900,∴∠DPA+∠CPO=900,∴∠DPA≠900,故有以下兩種情況:
①當∠PDA=900時,由勾股定理得,
又,,
,
即,解得(不合題意,舍去)
②當∠PAD=900時,點D在BA上,故AE=3-t,得t=3
綜上,經過2秒或3秒時,△PAD是直角三角形;
(4)∵根據點D的運動路線與OB平行且相等,OB=,
∴點D運動路線的長為.
科目:初中數學 來源: 題型:
【題目】某校240名學生參加植樹活動,要求每人植樹4~7棵,活動結束后抽查了20名學生每人的植樹量,并分為四類:A類4棵、B類5棵、C類6棵、D類7棵,將各類的人數繪制成如圖所示不完整的條形統(tǒng)計圖,回答下列問題:
(1)補全條形圖;
(2)寫出這20名學生每人植樹量的眾數和中位數;
(3)估計這240名學生共植樹多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有一組對邊平行,有一個內角是它對角的一半的凸四邊形叫做半對角四邊形,如圖1,直線,點,在直線上,點,在直線上,若,則四邊形是半對角四邊形.
(1)如圖1,已知,,,若直線,之間的距離為,則AB的長是____,CD的長是______;
(2)如圖2,點是矩形的邊上一點,,.若四邊形為半對角四邊形,求的長;
(3)如圖3,以的頂點為坐標原點,邊所在直線為軸,對角線所在直線為軸,建立平面直角坐標系.點是邊上一點,滿足.
①求證:四邊形是半對角四邊形;
②當,時,將四邊形向右平移個單位后,恰有兩個頂點落在反比例函數的圖象上,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系xoy中,點M在x軸的正半軸上,⊙M交x軸于A、B兩點,交y軸于C、D兩點,且C為弧AE的中點,AE交y軸于G點,若點A的坐標為(-1,0),AE=4
(1)求點C的坐標;
(2)連接MG、BC,求證:MG∥BC
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊三角形ABC內的一點,∠BOC=150°,將△BOC繞點C按順時針旋轉得到△ADC,連接OD,OA.
(1)求∠ODC的度數;
(2)若OB=2,OC=3,求AO的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校學生會干部對校學生會倡導的“牽手特殊教育”自愿捐款活動進行抽樣調查,得到一組學生捐款情況的數據,對學校部分捐款人數進行調查和分組統(tǒng)計后,將數據整理成如圖所示的統(tǒng)計圖(圖中信息不完整).己知A、B兩組捐款人數的比為1: 5.
請結合以上信息解答下列問題.
(1)a= ,本次調查樣本的容量是 ;
(2)先求出C組的人數,再補全“捐款人數分組統(tǒng)計圖1”
(3)根據統(tǒng)計情況,估計該校參加捐款的4500名學生有多少人捐款在20至40元之間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖在菱形ABCD中,AB=4,∠DAB=30°,點E是AD的中點,點M是的一個動點(不與點A重合),連接ME并廷長交CD的延長線于點N連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;(2)當AM為何值時,四邊形AMDN是矩形并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com