【題目】如圖,在中, ,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是( )
A.B.C.D.
【答案】C
【解析】
如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.
解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,
此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=90°,
∵∠OP1B=90°,
∴OP1∥AC
∵AO=OB,\
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值為OP1-OQ1=1,
如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,
P2Q2最大值=5+3=8,
∴PQ長的最大值與最小值的和是9.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是BC邊上的高,E是BC邊上的一個動點(不與B,C重合),EF⊥AB,EG⊥AC,垂足分別為F,G.
(1)求證:;
(2)FD與DG是否垂直?若垂直,請給出證明;若不垂直,請說明理由;
(3)當的值為多少時,△FDG為等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的袋子中有四張標有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。
小明畫出樹形圖如下:
小華列出表格如下:
第一次 第二次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是:隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為淮獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=1,與x軸交于A、B(-1,0),與y軸交于C.下列結(jié)論錯誤的是( )
A.二次函數(shù)的最大值為a+b+cB.4a-2b+c﹤0
C.當y>0時,-1﹤x﹤3D.方程ax2+bx+c=-2解的情況可能是無實數(shù)解,或一個解,或二個解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△BPQ的頂點P在正方形ABCD的對角線AC上(P與AC不重合),∠PBQ=90°,QP與BC交于E,QP延長線交AD于F,連CQ.
(1)①求證:AP=CQ ;
②求證:
(2)當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,∠EDF=90°,點E在邊AB上且不與點A重合,點F在邊BC的延長線上,DE交AC于Q,連接EF交AC于P
(1)求證:△ADE≌△CDF;
(2)求證:PE=PF;
(3)當AE=1時,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說法:
①;②方程的根為,;③;④當時,隨值的增大而增大;⑤當時,.其中,正確的說法有________(請寫出所有正確說法的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點,連接DE,點F為線段DE上一點,且∠AFE=∠B.
(1)求證△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com