精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知⊙O的半徑為5,銳角△ABC內接于⊙O,BD⊥AC于點D,AB=8,則sin∠CBD的值等于( )

A. 0.6 B. 0.8 C. D. 0.75

【答案】A

【解析】

連接OA、OB,由于OMAB,根據垂徑定理易證得∠BOM=AOB,而由圓周角定理可得∠BCD=AOB=BOM,因此∠CBD=OBM,只需求得∠OBM的正弦值即可;在RtOBM中,由垂徑定理可得BM=4,已知⊙O的半徑OB=5,由勾股定理可求得OM=3,即可求出∠OBM即∠CBD得正弦值,由此得解.

連接OA、OB;

OMAB,

AM=BM=4,AOM=BOM=AOB;

又∵∠BCD=AOB,

∴∠BOM=BCD,OBM=CBD;

RtOBM中,OB=5,BM=4,由勾股定理得OM=3;

sinOBM=,sinCBD=sinOBM=.

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示的正方形網格中,每個小正方形的邊長均為個單位,的三個頂點都在格點上點.

1)在網格中畫出向下平移個單位得到的;

2)在網格中畫出關于直線對稱的;

2)在直線上畫一點,使得的值最。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數圖象的頂點坐標是(-1,2),且過點(0, ).

(1)求二次函數的解析式,并在圖中畫出它的圖象;

(2)求證:對任意實數m,點M(m,-m2)都不在這個二次函數的圖象上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線PQ⊥直線MN,垂足為O△AOB是直角三角形,∠AOB=90°,斜邊AB與直線PQ交于點C

1)若∠A=∠AOC=30°,則BC_______BO(填“>”“=”“<”);

2)如圖2,延長AB交直線MN于點E,過OOD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度數(用含α的代數式表示);

3)如圖3,OF平分∠AOM,∠BCO的平分線交FO的延長線于點R,∠A=36°,當△AOBO點旋轉(斜邊AB與直線PQ始終相交于點C),問∠R的度數是否發(fā)生改變?若不變,求其度數;若改變,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】杭州休博會期間,嘉年華游樂場投資150萬元引進一項大型游樂設施.若不計維修保養(yǎng)費用,預計開放后每月可創(chuàng)收33萬元.而該游樂設施開放后,從第1個月到第x個月的維修保養(yǎng)費用累計為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費用稱為游樂場的純收益g(萬元),g也是關于x的二次函數;

(1)若維修保養(yǎng)費用第1個月為2萬元,第2個月為4萬元.求y關于x的解析式;

(2)求純收益g關于x的解析式;

(3)問設施開放幾個月后,游樂場的純收益達到最大;幾個月后,能收回投資?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形中,,將角形繞點按逆時針方向旋轉后得到三角形在旋轉過程中:

旋轉中心是什么?為多少度?

與線段相等的線段是什么?

三角形的面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F,G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為( )

A. B. C. D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標為(﹣2,0),點A的坐標為(﹣63),求點B的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸 》、《紅樓夢是我國古代長篇小說中的典型代表,被稱為四大古典名著”,某中學為 了了解學生對四大古典名著的閱讀情況,就四大古典名著你讀完了幾部的問題在全校 學生中進行了抽樣調查,根據調查結果繪制如圖所示的兩個不完整的統計圖,請結合圖中 信息解決下列問題

(1)請將條形統計圖補充完整;

(2)本次調查所得數據的眾數是 ,中位數是 扇形統計圖中“1 在扇形的圓心角為 度;

(3)若該校共有 800 個人那么看完 3 部以上包含 3 的有多少人?

查看答案和解析>>

同步練習冊答案