如圖,AB是半圓O的直徑,C為半圓上一點,N是線段BC上一點(不與B﹑C重合),過N作AB的垂線交AB于M,交AC的延長線于E,過C點作半圓O的切線交EM于F,若NC:CF=3:2,則sinB=   
【答案】分析:由NC:CF=3:2,設NC=3x,則CF=2x,根據(jù)AB為直徑可證BC⊥AE,因為CF為⊙O的切線,故OC⊥CF,利用互余關(guān)系可證∠OCB=∠ECF,∠B=∠E,而OB=OC,則∠OCB=∠B,故∠ECF=∠E,EF=CF=2x,同理可證∠FCN=∠FNC,F(xiàn)N=CF=2x,利用∠B=∠E,在Rt△CEN中,求sinE即可.
解答:解:依題意,NC:CF=3:2,設NC=3x,則CF=2x,
∵AB為直徑,∴BC⊥AE,
∵CF為⊙O的切線,∴OC⊥CF,
∵∠OCB+∠BCF=∠BCF+∠ECF=90°,
∴∠OCB=∠ECF,同理可證∠B=∠E,
∵OB=OC,∴∠OCB=∠B,
∴∠ECF=∠E,則EF=CF=2x,
同理可證∠FCN=∠FNC,則FN=CF=2x,
∴在Rt△CEN中,sinE===,
∴sinB=sinE=
故答案為
點評:本題綜合考查了切線的性質(zhì),等腰三角形的判定與性質(zhì),圓周角定理及解直角三角形的知識.關(guān)鍵是判斷等腰三角形,得出直角三角形中直角邊與斜邊的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,以OA為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結(jié)論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結(jié)論是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案