【題目】如圖,在△ABC中,AB=AC,分別以B、C為圓心,BC長為半徑在BC下方畫弧.設(shè)兩弧交于點D,與AB、AC的延長線分別交于點E、F,連接AD、BD、CD
(1)求證:AD平分∠BAC。
(2)若BC=6,∠BAC=50°,求弧DE、弧DF的長度之和。(結(jié)果保留π)
【答案】
(1)
證明:根據(jù)題意得:BD=CD=BC,
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS).
∴∠BAD=∠CAD,
即AD平分∠BAC
(2)
解:∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∵BD=CD=BC,
∴△BDC為等邊三角形,
∴∠DBC=∠DCB=60°,
∴∠DBE=∠DCF=55°,
∵BC=6,∴BD=CD=6,
∴ 的長度=的長度==;
∴、的長度之和為+=.
【解析】(1)根據(jù)題意得出BD=CD=BC,由SSS證明△ABD≌△ACD,得出∠BAD=∠CAD即可;
(2)由等腰三角形的性質(zhì)得出∠ABC=∠ACB=65°,由等邊三角形的性質(zhì)得出∠DBC=∠DCB=60°,再由平角的定義求出∠DBE=∠DCF=55°,然后根據(jù)弧長公式求出、 的長度,即可得出結(jié)果.
【考點精析】通過靈活運用弧長計算公式,掌握若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在8×8的正方形網(wǎng)格中,有一個Rt△AOB,點O是直角頂點,點O、A、B分別在網(wǎng)格中小正方形的頂點上,請按照下面要求在所給的網(wǎng)格中畫圖.
(1)在圖1中,將△AOB先向右平移3個單位,再向上平移2個單位,得到△A1O1B1 , 畫出平移后的△A1O1B1;(其中點A、O、B的對應(yīng)點分別為點A1 , O1 , B1)
(2)在圖2中,△AOB與△A2O2B2是關(guān)于點P對稱的圖形,畫出△A2O2B2 , 連接BA2 , 并直接寫出tan∠A2BO的值.(其中A,O,B的對應(yīng)點分別為點A2 , O2 , B2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點.
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為 度
(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?
(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是1男1女的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的橫坐標、縱坐標的實際意義
(2)求線段AB所表示的y1與x之間的函數(shù)表達式
(3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com