【題目】如圖,在RtABC中,∠C=90°ADABC的角平分線,若CD=4,AC=12,AB=15DEABE,則BDE的面積是______

【答案】6

【解析】

先根據(jù)角平分線的性質(zhì)得出CD=ED,再利用HL證明RtACDRtAED,根據(jù)全等三角形的性質(zhì)得到AE=AC=12DE=CD=4,于是得到BE=AB-AE=3,進(jìn)而根據(jù)三角形的面積公式即可求出△BDE的面積.

∵∠C=90°,AD△ABC的角平分線,DE⊥AB,

∴CD=ED

Rt△ACDRt△AED中,

∴Rt△ACD≌Rt△AEDHL),

∴AE=AC=12,DE=CD=4,

∵AB=15,

∴BE=AB-AE=3

∴SBDE=BEDE=×3×4=6

故答案為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

【拓展延伸】

3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請回答下列問題:

(1)若多項(xiàng)式的值與的取值無關(guān),求的值.

(2)若關(guān)于的多項(xiàng)式不含二次項(xiàng),的值.

(3)若是關(guān)于的四次三項(xiàng)式,求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道“兩邊和一角分別相等的兩個(gè)三角形不一定全等”,如圖(1),,,,但卻不全等.但是如果兩個(gè)直角三角形呢?如圖(2),,,則嗎?

(1)根據(jù)圖(2)完成以下證明和閱讀:

中,

,____________(勾股定理)

,____________

,.____________

中,,,

____________(____________)

歸納:斜邊和一條直角邊相等的兩個(gè)直角三角形全等;簡稱為“斜邊直角邊”或“”.

幾何語言如下:

中,

,

(2)如圖(3)已知,;求證:平分.(每一步都要填寫理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只漁船在燈塔C的正西方向10海里的A處,以20海里/時(shí)的速度沿北偏東30°方向行駛.

1)多長時(shí)間后,漁船距燈塔最近?

2)多長時(shí)間后,漁船行駛到燈塔的正北方向?此時(shí)漁船距燈塔有多遠(yuǎn)?(其中:202-102=17.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)轉(zhuǎn)盤被平均分成12,每份上寫上不同的數(shù)字,游戲方法:先猜數(shù)后轉(zhuǎn)動轉(zhuǎn)盤,若指針指向的數(shù)字與所猜的數(shù)一致,則猜數(shù)者獲勝.現(xiàn)提供三種猜數(shù)方法:

猜是奇數(shù)”,或是偶數(shù)”;

猜是大于10的數(shù)”,或是不大于10的數(shù)”;

猜是“3的倍數(shù)”,或是不是3的倍數(shù).

如果你是猜數(shù)者,你愿意選擇哪一種猜數(shù)方法?怎樣猜?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市開展美麗泰安,創(chuàng)衛(wèi)同行活動,某校倡議學(xué)生利用雙休日在某公園參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息可知扇形圖中的“1.5小時(shí)部分圓心角的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距80km,一輛汽車上午9:00從甲地出發(fā)駛往乙地,勻速行駛了一半的路程后將速度提高了20km/h,并繼續(xù)勻速行駛至乙地,汽車行駛的路程y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系如圖所示,該車到達(dá)乙地的時(shí)間是當(dāng)天上午(  )

A. 10:35 B. 10:40 C. 10:45 D. 10:50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)、軸上,且,的面積為14.將沿軸平移得到,當(dāng)點(diǎn)中點(diǎn)時(shí),點(diǎn)恰好在軸上.

求:(1)點(diǎn)的坐標(biāo);

2的面積.

查看答案和解析>>

同步練習(xí)冊答案