已知如圖,平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點C,點D的坐標分別為(0,4),(5,0),,點P在BC邊上運動(不與B,C重合),當△ODP是腰長為5的等腰三角形時,點P的坐標為:   
【答案】分析:求出OA、BC,求出的P點的橫坐標必須小于BC的長10,根據(jù)矩形的性質得出P的縱坐標是4(和C的縱坐標相等),分為兩種情況:①當OP=OD=5時,在Rt△OCP中,由勾股定理求出CP即可;②當DP=OD=5時有P和P′兩點,過D作DE⊥CB于E,由勾股定理求出PE,求出CP、CP′即可.
解答:解:∵C(0,4)D(5,0),
∴OC=4,OD=5,
∵四邊形OABC是矩形,
∴BC∥OA,∠PCO=90°,
=,C(0,4),
∴OC=4,OA=10,
∵四邊形OABC是矩形,
∴BC=OA=10,BC∥OA,
∴B(10,4),
分為兩種情況:①當OP=OD=5時,在Rt△OCP中,由勾股定理得:CP==3,
即P的坐標是(3,4);
②以D為圓心,以5為半徑作弧,交CB于P、P′,此時DP=DP′=5=OD,過D作DE⊥CB于E,
∵在Rt△EDP中,DE=OC=4,由勾股定理得:PE==3,
∴CP=5-3=2<BC,
∵P在BC上,BC∥OA,B(10,4),
∴P的坐標是(2,4);
當在P′處時,CP′=5+3=8<BC,
∵P′在BC上,BC∥OA,B(10,4),
此時P′的坐標是(8,4).
故答案為:(2,4)或(3,4)或(8,4).
點評:本題考查學生知識點是等腰三角形的性質、勾股定理、矩形的性質、坐標和圖形變換等,注意:應進行分類討論,題目比較好,難度適中.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川巴中卷)數(shù)學(解析版) 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆安徽滁州八年級下期末模擬數(shù)學試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐

標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線O-A-B于點E.

(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關系式,并寫出自變量的取值范圍;

(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

同步練習冊答案