在公式法分解因式中,有一種公式a3+b3=(a+b)(a2-ab+b2)叫立方和公式,請用它把x3+8分解因式為________.

(x+2)(x2-2x+4)
分析:根據(jù)所給公式,將x3+8先變形為x3+23,然后套用公式,進(jìn)行分解即可.
解答:x3+8=x3+23=(x+2)(x2-2x+4).
點(diǎn)評:本題考查了信息獲取能力,讀懂題目信息是解題的關(guān)鍵,要注意公式中的字母的對應(yīng)情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、在公式法分解因式中,有一種公式a3+b3=(a+b)(a2-ab+b2)叫立方和公式,請用它把x3+8分解因式為
(x+2)(x2-2x+4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、對于二次三項(xiàng)式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項(xiàng)式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a2這項(xiàng),使整個(gè)式子的值不變.于是有x2+2ax-3a2=x2+2ax-3a2+a2-a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像上面這樣把二次三項(xiàng)式分解因式的方法叫做添項(xiàng)法.
請用上述方法把m2-6m+8分解因式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對于二次三項(xiàng)式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項(xiàng)式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a2這項(xiàng),使整個(gè)式子的值不變.于是有x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-4a2
=(x+a)2-(2a)2=(x+3a)(x-a)
像上面這樣把二次三項(xiàng)式分解因式的方法叫做添(拆)項(xiàng)法.
(1)請用上述方法把x2-4x+3分解因式.
(2)多項(xiàng)式x2+2x+2有最小值嗎?如果有,那么當(dāng)它有最小值時(shí)x的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于二次三項(xiàng)式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對于二次三項(xiàng)式x2+2ax-3a2,就不能直接用公式法了,我們可以在二次三項(xiàng)式x2+2ax-3a2中先加上一項(xiàng)a2,使其成為完全平方式,再減去a2這項(xiàng),使整個(gè)式子的值不變.于是有x2+2ax-3a2=x2+2ax-3a2+a2-a2
=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像上面這樣把二次三項(xiàng)式分解因式的方法叫做添(拆)項(xiàng)法.
(1)請用上述方法求出x2-4xy+3y2=0(滿足xy≠0,且x≠y)中y與x的關(guān)系式.
(2)利用上述關(guān)系式求
x
y
-
y
x
-
x2+y2
xy
的值.

查看答案和解析>>

同步練習(xí)冊答案