【題目】如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′= .
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC與BD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小正方形的邊長都為1,在建立平面直角坐標系后,△ABC的頂點均在格點上.
(1)以點A為旋轉中心,將△ABC繞點A順時針旋轉90°得到△AB1C1,畫出△AB1C1;
(2)畫出△ABC關于原點O成中心對稱的△A2B2C2,若點B的坐標為(-2,-2),則點B2的坐標為_________.
(3)若△A2B2C2可看作是由△AB1C1繞點P順時針旋轉90°得到的,則點P的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC,BE⊥AE于點E,點F是BC的中點.
(1)如圖1,BE的延長線與AC邊相交于點D,求證:EF=(AC﹣AB);
(2)如圖2,請直接寫出線段AB、AC、EF之間的數(shù)量關系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,AE 平分∠BAD,DE 平分∠ADC,以下結論:①∠AED=90°;②點 E 是 BC 的中點;③DE=BE;④AD=AB+CD;其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點A落在邊CD的中點E處,折痕為FG,點F、G分別在邊AD、BC上,則折痕FG的長度為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點為P,與y軸的交點為Q,點F(1, ).
(1)求tan∠OPQ的值;
(2)將拋物線C向上平移得到拋物線C′,點Q平移后的對應點為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點P關于直線Q′F的對稱點為K,射線FK與拋物線C′相交于點A,求點A的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,CA=CB,在△AED中,DA=DE,點D,E分別在CA,AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關系是;
(2)若∠ACB=∠ADE=120°,將△AED繞點A旋轉至如圖②所示的位置,則CD與BE的數(shù)量關系是;,
(3)若∠ACB=∠ADE=2α(0°<α<90°),將△AED繞點A旋轉至如圖③所示的位置,探究線段CD與BE的數(shù)量關系,并加以證明(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小滿的一次作業(yè),老師說小滿的解題過程不完全正確,并在作業(yè)旁寫出了批改.
長跑比賽中,張華跑在前面,在離終點時他以的速度向終點沖刺,在他身后的李明需以多快的速度同時開始沖刺,才能在張華之前到達終點?
解:設李明以的速度開始沖刺,
依題意,得,
兩邊同時除以25,得.
答:李明需以大于的速度同時開始沖刺,才能在張華之前到達終點.
請回答:必須添加“根據(jù)實際意義可知,”這個條件的理由是_______________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com