【題目】已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2﹣2x+3,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)點(diǎn)D(﹣1,2);(3)點(diǎn)P(,)(4)不存在,理由見解析.
【解析】
(1)利用待定系數(shù)法可求得函數(shù)的表達(dá)式,再通過配方即可求得頂點(diǎn)坐標(biāo);
(2)又S△CPD:S△BPD=1:2,可得BD=BC=×=,再利用解直角三角形的知識(shí)即可求得答案;
(3)設(shè)直線PE交x軸于點(diǎn)H,∠OGE=15°,∠PEG=2∠OGE=30°,則∠OHE=45°,故OH=OE=1,解由①②構(gòu)成的方程組即可求得答案;
(4)連接BC,過點(diǎn)P作y軸的平行線交BC于點(diǎn)H,設(shè)點(diǎn)P(x,﹣x2﹣2x+3),點(diǎn)H(x,x+3),則S四邊形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,得到關(guān)于x的一元二次方程,根據(jù)方程解的情況即可得結(jié)論.
(1)∵拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),
∴,
∴,
∴拋物線的表達(dá)式為:y=﹣x2﹣2x+3…①,
y=﹣x2﹣2x+3=-(x+1)2+4,
∴頂點(diǎn)坐標(biāo)為(﹣1,4);
(2)設(shè)點(diǎn)D坐標(biāo)為(xD,yD),∵OB=OC,∠BOC=90°,
∴∠CBO=45°,BC=,
∵S△CPD:S△BPD=1:2,
∴BD:DC=2:1,
∴BD=BC=×=,
∴xD=-3+ BDcos∠CBO=-3+2=-1, yD=BDsin∠CBO=2,
∴點(diǎn)D(﹣1,2);
(3)如圖2,設(shè)直線PE交x軸于點(diǎn),
∵∠OGE=15°,∠EOG=90°,
∴∠OEG=90°-15°=75°,
∵∠PEG=2∠OGE,
∴∠PEG=2∠OGE=30°,
∴∠OHE=∠OGE+∠PEG=45°,∠HEO=∠OEG-∠PEG=45°,
∴OH=OE=1,
∴H(-1,0),
設(shè)直線HE的解析式為y=mx+n,把H(-1,0)、E(0,-1)分別代入得,
解得,
∴直線HE的表達(dá)式為:y=﹣x﹣1…②,
聯(lián)立①②并解得:,(舍去),
故點(diǎn)P(,);
(4)不存在,理由:
如圖3,連接BC,過點(diǎn)P作y軸的平行線交BC于點(diǎn)H,
直線BC的表達(dá)式為:y=x+3,
設(shè)點(diǎn)P(x,﹣x2﹣2x+3),點(diǎn)H(x,x+3),
則S四邊形BOCP=S△OBC+S△PBC=×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,
整理得:3x2+9x+7=0,
解得:△<0,故方程無解,
則不存在滿足條件的點(diǎn)P.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc<0;②c+2a>0;③9a﹣3b+c=0;④a﹣b≤am2+bm(m為實(shí)數(shù));⑤4ac﹣b2<0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)過點(diǎn)E(8,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線上,∠BAD的平分線AM交BC于點(diǎn)M,點(diǎn)N是CD的中點(diǎn),已知OA=2,且OA:AD=1:3.
(1)求拋物線的解析式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;
(3)在x軸下方且在拋物線上是否存在點(diǎn)P,使△ODP中OD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)矩形ABCD不動(dòng),將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線KL平分矩形的面積時(shí),求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,且BC為⊙O的直徑,在劣弧上取一點(diǎn)D,使,將△ADC沿AD對(duì)折,得到△ADE,連接CE.
(1)求證:CE是⊙O的切線;
(2)若CEC D,劣弧的弧長為π,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】滴滴快車是一種便捷的出行工具,計(jì)價(jià)規(guī)則如下表:
小王與小張各自乘坐滿滴快車,在同一地點(diǎn)約見,已知到達(dá)約見地點(diǎn)時(shí)他們的實(shí)際行車?yán)锍谭謩e為公里與公里,兩人付給滴滴快車的乘車費(fèi)相同.
求這兩輛滴滴快車的實(shí)際行車時(shí)間相差多少分鐘;
實(shí)際乘車時(shí)間較少的人,由于出發(fā)時(shí)間比另一人早,所以提前到達(dá)約見地點(diǎn)在大廳等候.已知他等候另一人的時(shí)間是他自己實(shí)際乘車時(shí)間的倍,且比另一人的實(shí)際乘車時(shí)間的一半多分鐘,計(jì)算倆人各自的實(shí)際乘車時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“勤勞”是中華民族的傳統(tǒng)美德,學(xué)校要求同學(xué)們?cè)诩依飵椭改缸鲆恍┝λ芗暗募覄?wù).在本學(xué)期開學(xué)初,小穎同學(xué)隨機(jī)調(diào)查了部分同學(xué)寒假在家做家務(wù)的總時(shí)間,設(shè)被調(diào)查的每位同學(xué)寒假在家做家務(wù)的總時(shí)間為x小時(shí),將做家務(wù)的總時(shí)間分為五個(gè)類別:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)請(qǐng)根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中m的值是 ,類別D所對(duì)應(yīng)的扇形圓心角的度數(shù)是 度;
(4)若該校有800名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校有多少名學(xué)生寒假在家做家務(wù)的總時(shí)間不低于20小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點(diǎn)E和點(diǎn)F是對(duì)角線AC上的兩點(diǎn),AE=CF,DF=BE,且DF∥BE,過點(diǎn)C作CG⊥AB交AB的延長線于點(diǎn)G.
(1)求證:四邊形ABCD是平行四邊形;(2)若tan∠CAB=,∠CBG=45°,BC=4,則ABCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣(b﹣2)x+b﹣3的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).為拋物線上一點(diǎn),橫坐標(biāo)為,且.
⑴求此拋物線的解析式;
⑵當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值;
⑶設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為.
①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
②當(dāng)時(shí),直接寫出的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com