【題目】已知拋物線yax2+bx+3經(jīng)過點(diǎn)A1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).

1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;

2)如圖1,連接OPBC于點(diǎn)D,當(dāng)SCPDSBPD12時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);

3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)Gx軸負(fù)半軸上的一點(diǎn),∠OGE15°,連接PE,若∠PEG2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);

4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1y=﹣x22x+3,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)點(diǎn)D(﹣1,2);(3)點(diǎn)P)(4)不存在,理由見解析.

【解析】

(1)利用待定系數(shù)法可求得函數(shù)的表達(dá)式,再通過配方即可求得頂點(diǎn)坐標(biāo);

(2)SCPDSBPD12,可得BDBC×,再利用解直角三角形的知識(shí)即可求得答案;

(3)設(shè)直線PEx軸于點(diǎn)H,∠OGE15°,∠PEG2OGE30°,則∠OHE45°,故OHOE1,解由①②構(gòu)成的方程組即可求得答案;

(4)連接BC,過點(diǎn)Py軸的平行線交BC于點(diǎn)H,設(shè)點(diǎn)P(x,﹣x22x+3),點(diǎn)H(x,x+3),則S四邊形BOCPSOBC+SPBC×3×3+(x22x+3x3)×38,得到關(guān)于x的一元二次方程,根據(jù)方程解的情況即可得結(jié)論.

(1)∵拋物線yax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0)

,

,

∴拋物線的表達(dá)式為:y=﹣x22x+3…①,

y=﹣x22x+3=-(x+1)2+4

∴頂點(diǎn)坐標(biāo)為(1,4);

(2)設(shè)點(diǎn)D坐標(biāo)為(xD,yD)∵OBOC,∠BOC=90°,

∴∠CBO45°,BC=,

∵SCPDSBPD12,

BDDC=21,

∴BDBC×,

xD=-3+ BDcos∠CBO=-3+2=-1, yDBDsin∠CBO2,

∴點(diǎn)D(1,2)

(3)如圖2,設(shè)直線PEx軸于點(diǎn)

∵∠OGE15°,∠EOG=90°,

∴∠OEG=90°-15°=75°,

∵∠PEG2∠OGE,

∠PEG2∠OGE30°,

∴∠OHE=∠OGE+∠PEG=45°,∠HEO=∠OEG-∠PEG=45°

∴OHOE1,

H(-10),

設(shè)直線HE的解析式為y=mx+n,把H(-1,0)、E(0,-1)分別代入得,

解得,

∴直線HE的表達(dá)式為:y=﹣x1…②

聯(lián)立①②并解得:,(舍去),

故點(diǎn)P(,);

(4)不存在,理由:

如圖3,連接BC,過點(diǎn)Py軸的平行線交BC于點(diǎn)H,

直線BC的表達(dá)式為:yx+3,

設(shè)點(diǎn)P(x,﹣x22x+3),點(diǎn)H(x,x+3),

S四邊形BOCPSOBC+SPBC×3×3+(x22x+3x3)×38,

整理得:3x2+9x+70

解得:0,故方程無解,

則不存在滿足條件的點(diǎn)P.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abam2+bmm為實(shí)數(shù));⑤4acb20.其中正確結(jié)論的個(gè)數(shù)是(  )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點(diǎn)E8,0),矩形ABCD的邊AB在線段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)CD在拋物線上,∠BAD的平分線AMBC于點(diǎn)M,點(diǎn)NCD的中點(diǎn),已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接MN、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點(diǎn)P,使△ODPOD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

4)矩形ABCD不動(dòng),將拋物線向右平移,當(dāng)平移后的拋物線與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線KL平分矩形的面積時(shí),求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且BC為⊙O的直徑,在劣弧上取一點(diǎn)D,使,將ADC沿AD對(duì)折,得到ADE,連接CE

1)求證:CE是⊙O的切線;

2)若CEC D,劣弧的弧長為π,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,計(jì)價(jià)規(guī)則如下表:

小王與小張各自乘坐滿滴快車,在同一地點(diǎn)約見,已知到達(dá)約見地點(diǎn)時(shí)他們的實(shí)際行車?yán)锍谭謩e為公里與公里,兩人付給滴滴快車的乘車費(fèi)相同.

求這兩輛滴滴快車的實(shí)際行車時(shí)間相差多少分鐘;

實(shí)際乘車時(shí)間較少的人,由于出發(fā)時(shí)間比另一人早,所以提前到達(dá)約見地點(diǎn)在大廳等候.已知他等候另一人的時(shí)間是他自己實(shí)際乘車時(shí)間的倍,且比另一人的實(shí)際乘車時(shí)間的一半多分鐘,計(jì)算倆人各自的實(shí)際乘車時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“勤勞”是中華民族的傳統(tǒng)美德,學(xué)校要求同學(xué)們?cè)诩依飵椭改缸鲆恍┝λ芗暗募覄?wù).在本學(xué)期開學(xué)初,小穎同學(xué)隨機(jī)調(diào)查了部分同學(xué)寒假在家做家務(wù)的總時(shí)間,設(shè)被調(diào)查的每位同學(xué)寒假在家做家務(wù)的總時(shí)間為x小時(shí),將做家務(wù)的總時(shí)間分為五個(gè)類別:A0x10),B10x20),C20x30),D30x40),Ex40).并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次共調(diào)查了   名學(xué)生;

2)請(qǐng)根據(jù)以上信息直接在答題卡中補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中m的值是   ,類別D所對(duì)應(yīng)的扇形圓心角的度數(shù)是   度;

4)若該校有800名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校有多少名學(xué)生寒假在家做家務(wù)的總時(shí)間不低于20小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點(diǎn)E和點(diǎn)F是對(duì)角線AC上的兩點(diǎn),AECF,DFBE,且DFBE,過點(diǎn)CCGABAB的延長線于點(diǎn)G

1)求證:四邊形ABCD是平行四邊形;(2)若tanCAB,∠CBG45°,BC4,則ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x為自變量的二次函數(shù)y=x2﹣(b2x+b3的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn)為拋物線上一點(diǎn),橫坐標(biāo)為,且

⑴求此拋物線的解析式;

⑵當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值;

⑶設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為

①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;

②當(dāng)時(shí),直接寫出的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案