【題目】如圖,拋物線x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)點(diǎn)M是對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)MA+MC的值最小時(shí),求點(diǎn)M的坐標(biāo)。

【答案】拋物線的解析式為y=x2x-2, 頂點(diǎn)D的坐標(biāo)為,-);(2) 點(diǎn)M的坐標(biāo)為(,-).

【解析】

(1)直接將(-1,0)代入解析式進(jìn)而得出答案,再利用配方法求出函數(shù)頂點(diǎn)坐標(biāo);

(2)利用軸對(duì)稱最短路徑求法即可得出M點(diǎn)的位置.

解:(1)∵點(diǎn)A(-1,0)在拋物線y=x2+bx-2上,

×(1)2+b×(-1)-2=0,

解得b=-,

∴拋物線的解析式為y=x2x-2.

y=x2x-2

=(x2-3x-4 )

=(x)2,

∴頂點(diǎn)D的坐標(biāo)為,-).

(2)∵頂點(diǎn)D的坐標(biāo)為,-),

∴拋物線的對(duì)稱軸為x=,

∵拋物線y=x2+bx-2x軸交于A,B兩點(diǎn),

∴點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱軸x=對(duì)稱,

∵A(-1,0).

∴點(diǎn)B的坐標(biāo)為(4,0),

當(dāng)x=0時(shí),y=x2x-2=-2,

則點(diǎn)C的坐標(biāo)為(0,-2),

BC與直線x=交點(diǎn)即為M點(diǎn),如圖,

根據(jù)軸對(duì)稱性,可得MA=MB,兩點(diǎn)之間線段最短可知,MC+MB的值最小.

設(shè)直線BC的解析式為y=kx+b,

C(0,-2),B(4,0)代入,可得

解得:

∴y=x-2,

當(dāng)x=時(shí),y=×2=-,

∴點(diǎn)M的坐標(biāo)為(,-).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知:正方形

如圖,點(diǎn)、點(diǎn)分別在邊上,且.此時(shí),線段、的數(shù)量關(guān)系和位置關(guān)系分別是什么?請(qǐng)直接寫出結(jié)論.

如圖,等腰直角三角形繞直角頂點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),連接、,此時(shí)中的結(jié)論是否成立,如果成立,請(qǐng)證明;如果不成立,請(qǐng)說明理由.

如圖,等腰直角三角形繞直角頂點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),連接、,猜想溝滿足什么數(shù)量關(guān)系時(shí),直線垂直平分.請(qǐng)直接寫出結(jié)論.

如圖,等腰直角三角形繞直角頂點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)時(shí),連接、、、得到四邊形,則順次連接四邊形各邊中點(diǎn)所組成的四邊形是什么特殊四邊形?請(qǐng)直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,BDABC的高,延長(zhǎng)BCE,使CE=CD=1,連接DE,則BE=___________,BDE=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)OAE平分BAD,交BCE,若EAO=15°,則BOE的度數(shù)為 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2; 其中正確結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)EAC(EA、C均不重合).

(1)若點(diǎn)FAB上,且EF平分Rt△ABC的周長(zhǎng),設(shè)AE=x,用含x的代數(shù)式表示

△AEF的面積SAEF;

(2)若點(diǎn)F在折線ABC上移動(dòng),試問是否存在直線EFRt△ABC的周長(zhǎng)與面積同時(shí)平分?若存在直線EF,則求出AE的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,點(diǎn)M(不與A、B重合),從點(diǎn)A出發(fā)沿AB方向以cm/s的速度向終點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過程中,過點(diǎn)MMNAB,交射線BC于點(diǎn)N,以線段MN為直角邊作等腰直角三角形MNQ,且∠MNQ=90°(點(diǎn)B、Q位于MN兩側(cè)).設(shè)△MNQ與△ABC重疊部分圖形面積為S(cm2),點(diǎn)M的運(yùn)動(dòng)時(shí)間為ts).

(1)用含t的代數(shù)式表示線段MN的長(zhǎng),MN=

(2)當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),t=

(3)St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn),垂足為

1)求OF的長(zhǎng);

2)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連E,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)八年級(jí)(5)班的學(xué)生到野外進(jìn)行數(shù)學(xué)活動(dòng),為了測(cè)量一池塘兩端A、B之間的距離,同學(xué)們?cè)O(shè)計(jì)了如下兩種方案:

方案1:如圖(1),先在平地上取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,連接AC并延長(zhǎng)AC至點(diǎn)D,連接BC并延長(zhǎng)至點(diǎn)E,使DCAC,ECBC,最后量出DE的距離就是AB的長(zhǎng).

方案2:如圖(2),過點(diǎn)BAB的垂線BF,在BF上取C、D兩點(diǎn),使BCCD,接著過DBD的垂線DE,交AC的延長(zhǎng)線于E,則測(cè)出DE的長(zhǎng)即為AB間的距離

問:(1)方案1是否可行?并說明理由;

2)方案2是否可行?并說明理由;

3)小明說:在方案2中,并不一定需要BFAB,DEBF,將BFABDEBF換成條   也可以.你認(rèn)為小明的說法正確嗎?如果正確的話,請(qǐng)你把小明所說的條件補(bǔ)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案