【題目】下表是某水庫一周內水位高低的變化情況(用正數(shù)記水位比前一日上升數(shù),用負數(shù)記下降數(shù)).那么本周星期幾水位最低

A. 星期二B. 星期四C. 星期六D. 星期五

【答案】C

【解析】

把周一之前的水位看作0,計算七天水位,比較得出答案即可.

把周一之前的水位看作0,

第一天水位:0.12米,

第二天水位:0.12-0.02=0.1米,

第三天水位:0.1-0.13=-0.03米,

第四天水位:-0.03-0.20=-0.23米,

第五天水位:-0.23-0.08=-0.31米,

第六天水位:-0.31-0.02=-0.33米,

第七天水位:-0.33+3.12=-0.01米,

周一水位最高,周六水位最低,高0.12--0.33=0.45米.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

118-(-13+(-27)-15 2)(-23+|-16|-|-7|-(-35

3 4

5 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù)

2,-4,8,-16,32,-64......;

4,-2,10,-14,34,-62,......

-1,2,-4,8,-16,32,......;

取每一行的第n個數(shù),依次記為ab,c. 如上圖,當n=2時,x=-4y=-2,z=2.

(1)n=7時,請直接寫出x、yz的值,并求這三個數(shù)中最大的數(shù)與最小的數(shù)的差;

(2)已知n為偶數(shù),且xy、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;

(3)m=x+y+z,則x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為______(用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】假設北碚萬達廣場地下停車場有5個出入口,每天早晨6點開始對外停車且此時車位空置率為75%,在每個出入口的車輛數(shù)均是勻速出入的情況下,如果開放2個進口和3個出口,8小時車庫恰好停滿;如果開放3個進口和2個出口,2小時車庫恰好停滿.2019年元旦節(jié)期間,由于商場人數(shù)增多,早晨6點時的車位空置率變?yōu)?/span>60%,又因為車庫改造,只能開放2個進口和1個出口,則從早晨6點開始經過________小時車庫恰好停滿.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結論:

①b2﹣4c>0;②b+c=0;③2b+c+3=0;④當1<x<3時,x2+(b﹣1)x+c<0

其中正確的有( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,2)請解答下列問題:

(1)畫出ABC關于y軸對稱的A1B1C1,并寫出A1的坐標.

(2)畫出ABC繞點B逆時針旋轉90°后得到的A2B2C2,并寫出A2的坐標.

(3)畫出A2B2C2關于原點O成中心對稱的A3B3C3,并寫出A3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標系中,點的坐標為的坐標為,點的坐標為,點軸上,且點在點的右側.

)求菱形的周長.

)若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設菱形移動的時間為(秒),當⊙相切,且切點為的中點時,連接,求的值及的度數(shù).

)在()的條件下,當點所在的直線的距離為時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ADBC,連接對角線AC

1)在邊AD上確定一點E,使EA=EC;在邊BC上確定一點F,使FA=FC;(尺規(guī)作圖,保留作圖痕跡,不寫作法)

2)在(1)的條件下,連接AF,CE.求證:四邊形AFCE是菱形.

查看答案和解析>>

同步練習冊答案