【題目】如圖,C為線段AB延長線上一點(diǎn),D為線段BC上一點(diǎn),CD=2BD,E為線段AC上一點(diǎn),CE=2AE
(1)若AB=18,BC=21,求DE的長;
(2)若AB=a,求DE的長;(用含a的代數(shù)式表示)
(3)若圖中所有線段的長度之和是線段AD長度的7倍,則的值為 .
【答案】(1)12;(2);(3) .
【解析】
(1)利用CD=2BD,CE=2AE,得出AE=AC=(AB+BC),進(jìn)一步利用BE=AB-AE,DE=BE+BD得出結(jié)論即可;
(2)利用(1)的計算過程即可推出;
(3)圖中所有線段有AE、AB、AD、AC、EB、ED、EC、BD、BC、DC共10條,求出所有線段的和用AC表示即可.
解:(1)∵CD=2BD,BC=21,
∴BD=BC=7,
∵CE=2AE,AB=18,
∴AE=AC=(AB+BC)=×(18+21)=13,
∴BE=AB﹣AE=18﹣13=5,
∴DE=BE+BD=5+7=12;
(2)∵CD=2BD,
∴BD=BC,
∵CE=2AE,AB=a,
∴AE=AC,
∴BE=AB﹣AE=AB﹣AC,
∴DE=BE+BD=AB﹣AC+BC=AB﹣(AC﹣BC)=AB﹣AB=AB,
∵AB=a,
∴DE=a;
(3)設(shè)CD=2BD=2x,CE=2AE=2y,
則BD=x,AE=y,
所有線段和AE+AB+AD+AC+EB+ED+EC+BD+BC+DC=4y+3(2y﹣3x)+2x+2x+3(2y﹣3x)+2x+2x+2x+2x+2x=7(y+2y﹣3x+x),
y=2x,
則AD=y+2y﹣3x+x=3y﹣2x=4x,AC=3y=6x,
∴=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把 個邊長為1的正方形拼接成一排,求得 , , ,計算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的菱形ABCD的兩個頂點(diǎn)B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,則弧BC的長度等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,BC=2AB=4,AE平分∠BAD交邊BC于點(diǎn)E,∠AEC的分線交AD于點(diǎn)F,以點(diǎn)D為圓心,DF為半徑畫圓弧交邊CD于點(diǎn)G,求弧FG的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A坐標(biāo)為(﹣4,0),AB∥y軸,點(diǎn)C在y軸上,一次函數(shù)y=x+3的圖象經(jīng)過點(diǎn)B、C.
(1)點(diǎn)C的坐標(biāo)為_____,點(diǎn)B的坐標(biāo)為_____;
(2)如圖②,直線l經(jīng)過點(diǎn)C,且與直線AB交于點(diǎn)M,O'與O關(guān)于直線l對稱,連接CO'并延長,交射線AB于點(diǎn)D.
①求證:△CMD是等腰三角形;
②當(dāng)CD=5時,求直線l的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用大小相同的小立方塊搭成一個幾何體,使得從正面和上面看到的幾何體的形狀圖如圖19所示.
(1)這樣的幾何體只有一種嗎?它最少需要多少個小立方塊?最多需要多少個小立方塊?
(2)畫出這兩種情況下從左面看到的幾何體的形狀圖.(各畫出一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com