【題目】在某飛機(jī)場(chǎng)東西方向的地面l上有一長(zhǎng)為1 km的飛機(jī)跑道MN(如圖),在跑道MN的正西端14.5千米處有一觀察站A.某時(shí)刻測(cè)得一架勻速直線降落的飛機(jī)位于點(diǎn)A的北偏西30°,且與點(diǎn)A相距15千米的B處;經(jīng)過(guò)1分鐘,又測(cè)得該飛機(jī)位于點(diǎn)A的北偏東60°,且與點(diǎn)A相距5千米的C處.

(1)該飛機(jī)航行的速度是多少千米/小時(shí)?(結(jié)果保留根號(hào))

(2)如果該飛機(jī)不改變航向繼續(xù)航行,那么飛機(jī)能否降落在跑道MN之間?請(qǐng)說(shuō)明理由.

【答案】(1)飛機(jī)航行的速度為600km/h(2)能降落在跑道MN之間,理由見(jiàn)解析.

【解析】

1)先求出∠BAC=90°,然后利用勾股定理列式求解即可得到BC,再求解即可;
2)作CElE,設(shè)直線BClF,然后求出CEAE,然后求出AF的長(zhǎng),再進(jìn)行判斷即可.

解:(1)由題意,得∠BAC90°

BC10,

∴飛機(jī)航行的速度為10×60600(km/h).

(2)能降落在跑道MN之間.

理由:作CEl于點(diǎn)E,設(shè)直線BCl于點(diǎn)F.

RtABC中,AC5BC10,

∴∠ABC30°,即∠BCA60°,

又∵∠CAE30°,∠ACE=∠FCE60°,

CEAC·sin CAE,

AEAC·cos CAE.

AF2AE15(km),

ANAMMN14.5115.5 km,

AMAFAN,

∴飛機(jī)不改變航向繼續(xù)航行,可以落在跑道MN之間.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD是一次函數(shù)yx+1圖象的其中一個(gè)伴侶正方形.

1)若某函數(shù)是一次函數(shù)yx+1,求它的圖象的所有伴侶正方形的邊長(zhǎng);

2)若某函數(shù)是反比例函數(shù),它的圖象的伴侶正方形為ABCD,點(diǎn)D2,m)(m2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;

3)若某函數(shù)是二次函數(shù)yax2+ca≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個(gè)點(diǎn)坐標(biāo)為(3,4).寫(xiě)出伴侶正方形在拋物線上的另一個(gè)頂點(diǎn)坐標(biāo),寫(xiě)出符合題意的其中一條拋物線解析式,并判斷你寫(xiě)出的拋物線的伴侶正方形的個(gè)數(shù)是奇數(shù)還是偶數(shù)?.(本小題只需直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形A1B1C1D1的邊長(zhǎng)為2,且∠A1B1C1=60°,對(duì)角線A1C1,B1D1相較于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系,以B1D1為對(duì)角線作菱形B1C2D1A2 ,使得∠B1A2D1=60°;再以A2C2為對(duì)角線作菱形A2B2C2D2,使得∠A2B2C2=60°;再以B2D2為對(duì)角線作菱形B2C3D2A3,使得∠B2A3D2=60°…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)A2018的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示為一上面無(wú)蓋的正方體紙盒,現(xiàn)將其剪開(kāi)展成平面圖,如圖2所示,已知展開(kāi)圖中每個(gè)正方形的邊長(zhǎng)為1,

(1)求線段A′C′的長(zhǎng)度;

(2)試比較立體圖中BAC與展開(kāi)圖中B′A′C′的大小關(guān)系?并寫(xiě)出過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠C=90°,點(diǎn)D在邊AB上,AD=AC=7,BD=BC.動(dòng)點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿CA向點(diǎn)A運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),以每秒2個(gè)單位的速度沿DA向點(diǎn)A運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),點(diǎn)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)M、N運(yùn)動(dòng)的時(shí)間為t秒.

1)求cosA的值.

2)當(dāng)以MN為直徑的圓與ABC一邊相切時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,∠ACB30°,AC6,現(xiàn)將RtABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到△ABC′,則圖中陰影部分面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓O中,弦AB8,點(diǎn)C在圓O(CA,B不重合),連接CACB,過(guò)點(diǎn)O分別作ODAC,OEBC,垂足分別是點(diǎn)D、E

(1)求線段DE的長(zhǎng);

(2)點(diǎn)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明想測(cè)量學(xué)校教學(xué)樓的高度,教學(xué)樓AB的后面有一建筑物CD,他測(cè)得當(dāng)光線與地面成22°的夾角時(shí),教學(xué)樓在建筑物的墻上留下高2米高的影子CE;而當(dāng)光線與地面成45°的夾角時(shí),教學(xué)樓頂A在地面上的影子F與墻角C13米的距離(點(diǎn)B,F(xiàn),C在同一條直線上),則AE之間的長(zhǎng)為_____米.(結(jié)果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=5BC=6,ADBC,垂足為D,點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)PPFAC交線段BD于點(diǎn)F,作PGABAD于點(diǎn)E,交線段CD于點(diǎn)G,設(shè)BP=x.

1)用含x的代數(shù)式表示線段DG的長(zhǎng);

2)設(shè)DEF的面積為 y,求yx之間的函數(shù)關(guān)系式,并寫(xiě)出定義域;

3PEF能否為直角三角形?如果能,求出BP的長(zhǎng);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案