【題目】在Rt△ABC中,∠ACB=90°,D是AB邊上的一點(diǎn),以BD為直徑作⊙O.與AC相切于點(diǎn)E,連結(jié)DE并延長(zhǎng)與BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:EF2=BDCF;
(2)若CF=1,BD=5.求sinA的值.
【答案】(1)見解析;
(2)sinA=
【解析】
試題(1)連接OE,由AC為圓O的切線,利用切線的性質(zhì)得到OE垂直于AC,再由BC垂直于AC,得到OE與BC平行,根據(jù)O為DB的中點(diǎn),得到E為DF的中點(diǎn),即OE為三角形DBF的中位線,利用中位線定理得到OE為BF的一半,再由OE為DB的一半,求出BD=BF,證△BHE與△ECF相似即可;
(2)連接DQ,求出EF,根據(jù)勾股定理求出BE,根據(jù)三角形面積公式求出DQ,根據(jù)勾股定理求出BQ,求出∠BAC=∠BDQ,解直角三角形求出即可.
試題解析:(1)如圖1,連接OE、BE,
∵AC與圓O相切,
∴OE⊥AC,
∵BC⊥AC,
∴OE∥BC,
又∵O為DB的中點(diǎn),
∴E為DF的中點(diǎn),即OE為△DBF的中位線,
∴OE=BF,
又∵OE=BD,
則BF=BD,
∵BD為⊙O直徑,
∴∠BED=90°,
∵∠ACB=90°,
∴∠BEF=∠ECF=90°,
∵∠F=∠F,
∴△ECF∽△BEF,
∴,
∴EF2=BFCF=BDCF;
(2) 如圖2,連接DQ,
∵EF2=BDCF,CF=1,BD=5,
∴EF=,
∵BD為⊙O的直徑,
∴DQ⊥BF,BE⊥DF,
∵BD=BF,BD=5,
∴BF=5,DE=EF=,
即DF=2,
由勾股定理得:BE==2,
∵在△BDF中,由三角形面積公式得:BF×DQ=DF×BE,
∴5DQ=2×2,
∴DQ=4,
在Rt△BDQ中,BD=5,DQ=4,由勾股定理得:BQ=3,
∵∠ACB=90°,DQ⊥BF,
∴DQ∥AC,
∴∠A=∠BDQ,
∴sinA=sin∠BDQ=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若拋物線上有兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(點(diǎn)A在點(diǎn)B左側(cè))則稱它為“完美拋物線”,如圖.
(1)若,求的值;
(2)若拋物線是“完美拋物線”,求的值;
(3)若完美拋物線與軸交于點(diǎn)E與軸交于兩點(diǎn)(點(diǎn)D在點(diǎn)C的左側(cè)),頂點(diǎn)為點(diǎn),是以為直角邊的直角三角形,點(diǎn),求點(diǎn)中的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.(本題參考數(shù)據(jù):sin67.4°=,cos67.4°=,tan67.4°=)
(1)求弦BC的長(zhǎng);
(2)請(qǐng)判斷點(diǎn)A和圓的位置關(guān)系,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為3米,臺(tái)階AC的坡度為1:(即AB:BC=1:),且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹DE的高度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別在線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是_______(只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,點(diǎn)是邊的中點(diǎn),將沿折疊后得到.延長(zhǎng)交邊于點(diǎn),則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)分別是邊的中點(diǎn),延長(zhǎng)到點(diǎn),使,得四邊形.若使四邊形是正方形,則應(yīng)在中再添加一個(gè)條件為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若n是一個(gè)兩位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,則稱n為“兩位遞增數(shù)”(如13,35,56等).在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從由數(shù)字1,2,3,4,5,6構(gòu)成的所有的“兩位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.
(1)寫出所有個(gè)位數(shù)字是5的“兩位遞增數(shù)”;
(2)請(qǐng)用列表法或樹狀圖,求抽取的“兩位遞增數(shù)”的個(gè)位數(shù)字與十位數(shù)字之積能被10整除的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=50°,則∠BDE= °.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com