【題目】《九章算術(shù)》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?.意思是:今有甲種袋子中裝有黃金9枚(每枚黃金重量相同),乙種袋子中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲種袋子比乙種袋子輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,則可建立方程為(  )

A.B.

C.D.

【答案】C

【解析】

設每枚黃金重x兩,每枚白銀重y兩,根據(jù)黃金9枚和白銀11枚的重量相等,黃金8枚和白銀1枚的重量比黃金1枚白銀10枚輕13,即可得出關(guān)于x,y的二元一次方程,此題得解.

解:設每枚黃金重x兩,每枚白銀重y兩,

依題意,得:

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,的中點.點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為.設點的運動速度為,若使得,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】英國《?》雜志最近對30部手機進行了檢測,結(jié)果發(fā)現(xiàn)有近四分之一的手機攜帶的細菌數(shù)量達到可接受數(shù)量的10倍,其中一部最臟的手機一度讓它的主人出現(xiàn)嚴重消化不良.在手機上發(fā)現(xiàn)的有害細菌中,最為常見的有害細菌當屬金黃色葡萄球菌.這種細菌可導致一系列感染,金黃色葡萄球菌為球形,直徑左右,00000008米這個數(shù)用科學記數(shù)法表示為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請認真閱讀下面的數(shù)學小探究系列,完成所提出的問題:

(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,過點D做BC邊上的高DE,則DE與BC的數(shù)量關(guān)系是   ,△BCD的面積為   ;

(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,請用含a的式子表示△BCD的面積,并說明理由;

(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AM=CM,MP⊥AB于點P.求證:BP2=AP2+BC2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y1=ax2+bx﹣4(a≠0)與x軸交于點A(﹣1,0)和點B(4,0).

(1)求拋物線y1的函數(shù)解析式;
(2)如圖①,將拋物線y1沿x軸翻折得到拋物線y2 , 拋物線y2與y軸交于點C,點D是線段BC上的一個動點,過點D作DE∥y軸交拋物線y1于點E,求線段DE的長度的最大值;
(3)在(2)的條件下,當線段DE處于長度最大值位置時,作線段BC的垂直平分線交DE于點F,垂足為H,點P是拋物線y2上一動點,⊙P與直線BC相切,且SP:SDFH=2π,求滿足條件的所有點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C是 的中點,點D是 的中點,連接AC,BD交于點E,則 =( )

A.
B.
C.1﹣
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機抽測了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:

請你根據(jù)圖中的信息,解答下列問題:

)寫出扇形圖中__________,并補全條形圖.

)在這次抽測中,測試成績的眾數(shù)和中位數(shù)分別是__________、__________

)該區(qū)體育中考選報引體向上的男生共有人,如果體育中考引體向上達個以上(含個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究
(1)請在圖①的正方形ABCD的對角線BD上作一點P,使PA+PC最小;

(2)如圖②,點P為矩形ABCD的對角線BD上一動點,AB=2,BC=2 ,點E為BC邊的中點,求作一點P,使PE+PC最小,并求這個最小值.

(3)如圖③,李師傅有一塊邊長為1000米的菱形ABCD采摘園,AC=1200米,BD為小路,BC的中點E為一水池,李師傅現(xiàn)在準備在小路BD上建一個游客臨時休息納涼室P,為了節(jié)省土地,使休息納涼室P到水池E與大門C的距離之和最短,那么是否存在符合條件的點P?若存在,請作出的點P位置,并求出這個最短距離;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案