【題目】小李在某商場(chǎng)購(gòu)買兩種商品若干次(每次商品都買) ,其中前兩次均按標(biāo)價(jià)購(gòu)買,第三次購(gòu)買時(shí),商品同時(shí)打折.三次購(gòu)買商品的數(shù)量和費(fèi)用如下表所示:

購(gòu)買A商品的數(shù)量/個(gè)

購(gòu)買B商品的數(shù)量/個(gè)

購(gòu)買總費(fèi)用/

第一次

第二次

第三次

1)求商品的標(biāo)價(jià)各是多少元?

2)若小李第三次購(gòu)買時(shí)商品的折扣相同,則商場(chǎng)是打幾折出售這兩種商品的?

3)在(2)的條件下,若小李第四次購(gòu)買商品共花去了元,則小李的購(gòu)買方案可能有哪幾種?

【答案】1商品標(biāo)價(jià)為80, 商品標(biāo)價(jià)為100.2)商場(chǎng)打六折出售這兩種商品.

3)有3種購(gòu)買方案,分別是A商品5個(gè),B商品12個(gè);A商品10個(gè),B商品8個(gè);A商品15個(gè),B商品4個(gè).

【解析】

1)可設(shè)商品標(biāo)價(jià)為, 商品標(biāo)價(jià)為,根據(jù)圖表給的數(shù)量關(guān)系列出二元一次方程組解答即可.

2)求出第三次商品如果按原價(jià)買的價(jià)錢,再用實(shí)際購(gòu)買費(fèi)用相比即可.

3)求出兩種商品折扣價(jià)之后,根據(jù)表中數(shù)量關(guān)系列出二元一次方程,化簡(jiǎn)后討論各種可能性即可.

:1)設(shè)商品標(biāo)價(jià)為, 商品標(biāo)價(jià)為,

由題意得,

解得.

所以商品標(biāo)價(jià)為80, 商品標(biāo)價(jià)為100.

2)由題意得,,

,

所以商場(chǎng)是打六折出售這兩種商品.

3商品折扣價(jià)為48, 商品標(biāo)價(jià)為60

由題意得,,

化簡(jiǎn)得, ,

,

由于皆為正整數(shù),可列表:

15

10

5

4

8

12

所以有3種購(gòu)買方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某產(chǎn)品的標(biāo)志圖案,要在所給的圖形圖中,把,三個(gè)菱形通過一種或幾種變換,使之變?yōu)榕c圖一樣的圖案:

(1)請(qǐng)你在圖中作出變換后的圖案(最終圖案用實(shí)線表示);

(2)你所用的變換方法是________(在以下變換方法中,選擇一種正

確的填到橫線上,也可以用自己的話表述).

①將菱形向上平移;

②將菱形繞點(diǎn)旋轉(zhuǎn);

③將菱形繞點(diǎn)旋轉(zhuǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代有著輝煌的數(shù)學(xué)成就,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).

1)小聰想從這4部數(shù)學(xué)名著中隨機(jī)選擇1部閱讀,求他選中《九章算術(shù)》的概率;

2)小聰擬從這4部數(shù)學(xué)名著中選擇2部作為假課外拓展學(xué)習(xí)內(nèi)容,用列表或樹狀圖求選中的名著恰好是《九章算術(shù)》和《周牌算經(jīng)》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F(xiàn)是平行四邊形ABCD對(duì)角線AC上兩點(diǎn),AE=CF=AC.連接DE,DF并延長(zhǎng),分別交AB,BC于點(diǎn)G,H,連接GH,則的值為( 。

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC沿著DE對(duì)折,點(diǎn)A落到A′處,若∠BDA′+CEA′70°,則∠A_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,、是弧(異于、)上兩點(diǎn),是弧上一動(dòng)點(diǎn),的角平分線交于點(diǎn),的平分線交于點(diǎn).當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),則、兩點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)的比是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知:在正方形ABCD中,點(diǎn)H在對(duì)角線BD上運(yùn)動(dòng)(不與BD重合)連接AH,過H點(diǎn)作HPAHH交直線CD于點(diǎn)P,作HQBDH交直線CD于點(diǎn)Q

1)當(dāng)點(diǎn)H在對(duì)角線BD上運(yùn)動(dòng)到圖1位置時(shí),則CQPD的數(shù)量關(guān)系是______

2)當(dāng)H點(diǎn)運(yùn)動(dòng)到圖2所示位置時(shí)

①依據(jù)題意補(bǔ)全圖形.

②上述結(jié)論還成立嗎?若成立,請(qǐng)證明.若不成立,請(qǐng)說明理由.

3)若正方形邊長(zhǎng)為,∠PHD=30°,直接寫出PC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,CPQ的面積為S.

①求S關(guān)于m的函數(shù)表達(dá)式;

②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案