【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
【答案】(1)證明見解析(2)4
【解析】(1)證明:∵將△BCE繞點C順時針旋轉到△DCF的位置,∴△BCE≌△DCF!唷螰DC=∠EBC。
∵BE平分∠DBC,∴∠DBE=∠EBC。∴∠FDC=∠EBE。
又∵∠DGE=∠DGE,∴△BDG∽△DEG。
(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC。
∵四邊形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°。
∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC。
∴∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°=∠BDF!郆D=BF,
∵△BCE≌△DCF,∴∠F=∠BEC=67.5°=∠DEG。
∴∠DGB=180°﹣22.5°﹣67.5°=90°,即BG⊥DF。
∵BD=BF,∴DF=2DG。
∵△BDG∽△DEG,BG×EG=4,∴。 ∴BG×EG=DG×DG=4!郉G=2
∴BE=DF=2DG=4。
(1)根據旋轉性質求出∠EDG=∠EBC=∠DBE,根據相似三角形的判定推出即可。
(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根據相似求出DG的長,即可求出答案
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以原點O為圓心的圓過點A(,0),直線y=kx-2k+3與⊙O交于B、C兩點,則弦BC的長的最小值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B、C、D為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2 cm/s的速度向D移動.
(1)P、Q兩點從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2;
(2)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】求證:相似三角形對應邊上的中線之比等于相似比.
要求:①根據給出的△ABC及線段A'B′,∠A′(∠A′=∠A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;
②在已有的圖形上畫出一組對應中線,并據此寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.
(1)求證:CE=CF;
(2)若點G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數據:≈1.41, ≈1.73)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com