如圖所示,在⊙O中,
AD
=
AC
,弦CD與弦AB交于點(diǎn)F,連接BC,若∠ACD=60°,⊙O的半徑長(zhǎng)為2cm.
(1)求∠B的度數(shù)及圓心O到弦AC的距離;
(2)求圖中陰影部分面積.
分析:(1)連接OA,OC,過O作OE⊥AC,垂足為點(diǎn)E,求出∠ABC=∠ACD即可,求出∠AOC度數(shù),即可求出OE、AE;
(2)求出△AOC和扇形AOC的面積即可.
解答:
(1)解:如圖,連接OA,OC,過O作OE⊥AC,垂足為點(diǎn)E,
∵弧AD=弧AC,
∴∠ABC=∠ACD
∵∠ACD=60°,
∴∠ABC=∠ACD=60°,
∴∠AOC=2∠ABC=120°,
又∵OA=OC,∴∠AOE=∠COE=
1
2
×120°=60°,
在Rt△AOE中,OA=2,OE=OAcos60°=1.

(2)在Rt△AOE中,OA=2,OE=1,
∴由勾股定理得:AE=
3
,
∴AC=2AE=2
3
,
∴S陰影=S扇形OAC-S△OAC=
120π•22
360
-
1
2
×2
3
×1=(
4
3
π-
3
)cm2
點(diǎn)評(píng):本題考查了圓周角定理,圓心角、弧、弦之間的關(guān)系,扇形面積,三角形面積的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理和計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在?ABCD中,EF∥AB且交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,BF交于點(diǎn)M,連接CF,DE交于點(diǎn)N,求證:MN∥AD且MN=
12
AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠C=90°,D是AC邊上一點(diǎn),且AD=DB=5,CD=3,求tan∠CBD和sinA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在?ABCD中,E,F(xiàn)分別AB,CD的中點(diǎn),連接DE,EF,BF,則圖中平行四邊形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖所示,在△ABC中畫出長(zhǎng)寬之比為2:1的矩形,使長(zhǎng)邊在BC上.(注:保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,已知D是BC邊上的點(diǎn),O為△ABD的外接圓圓心,△ACD的外接圓與△AOB的外接圓相交于A,E兩點(diǎn).求證:OE⊥EC.

查看答案和解析>>

同步練習(xí)冊(cè)答案