【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點(diǎn)E,從E點(diǎn)射出一束光線經(jīng)OA上一點(diǎn)D反射,反射光線DC恰好與OB平行,則∠DEB的度數(shù)是( 。
A.75°36′
B.75°12′
C.74°36′
D.74°12′
【答案】B
【解析】解:過點(diǎn)D作DF⊥AO交OB于點(diǎn)F,
∵入射角等于反射角,
∴∠1=∠3,
∵CD∥OB,
∴∠1=∠2(兩直線平行,內(nèi)錯(cuò)角相等);
∴∠2=∠3(等量代換);
在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,
∴∠2=90°﹣37°36′=52°24′;
∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.
故選B.
【考點(diǎn)精析】通過靈活運(yùn)用平行線的性質(zhì),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn),G,H分別是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,則四邊形EFGH的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),F(xiàn)為DE的中點(diǎn),且∠BFC=90°.
(1)當(dāng)E為BC中點(diǎn)時(shí),求證:△BCF≌△DEC;
(2)當(dāng)BE=2EC時(shí),求 的值;
(3)設(shè)CE=1,BE=n,作點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)C′,連結(jié)FC′,AF,若點(diǎn)C′到AF的距離是 ,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅要將邊長(zhǎng)為4m和3m的平行四邊形框架固定,現(xiàn)有下列長(zhǎng)度的木棒,在木棒的兩端釘上達(dá)到固定平行四邊形的目的,不符合要求的是( 。
A.2m
B.3m
C.4m
D.8m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1, ).
(1)求點(diǎn)P,Q的坐標(biāo);
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七巧板是我們祖先的一項(xiàng)卓越創(chuàng)造,被譽(yù)為“東方魔板”,小明利用七巧板(如圖1所示)中各板塊的邊長(zhǎng)之間的關(guān)系拼成一個(gè)凸六邊形(如圖2所示),則該凸六邊形的周長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8 cm,CB=6 cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長(zhǎng);
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說明理由;
(3)若C在線段AB的延長(zhǎng)線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,并說明理由;
(4)你能用一句簡(jiǎn)潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥CD,OF平分∠BOD.
(1)圖中除直角外,請(qǐng)寫出一對(duì)相等的角嗎:(寫出符合的一對(duì)即可)
(2)如果∠AOE=26°,求∠BOD和∠COF的度數(shù).(所求的角均小于平角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,CD切⊙O于點(diǎn)E,AD、BC分別切⊙O于A、B兩點(diǎn),AD與CD相交于D,BC與CD相交于C,連接OD、OC,對(duì)于下列結(jié)論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點(diǎn)E在半圓上運(yùn)動(dòng)(A、B兩點(diǎn)除外),則線段AD與BC的積為定值.其中正確的個(gè)數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com