作业宝如圖,在△ABC中,CA=CB,∠C=40°,點(diǎn)E是△ABC內(nèi)一點(diǎn),且EA=EB,△ABC外一點(diǎn)D滿足BD=AC,且BE平分∠DBC,則∠BDE的度數(shù)=________.

20°
分析:先連接EC,由SSS就可以得出△ACE≌△BCE,就可以得出∠ACE=∠BCE,就可以求出∠BCE的值,再證明△BCE≌△BDE就可以得出∠D=∠BCE而得出結(jié)論.
解答:連接EC.
在△ACE和△BCE中

∴△ACE≌△BCE(SSS),
∴∠ACE=∠BCE.
∵∠ACE+∠BCE=∠ACB,
∴2∠BCE=∠ACB.
∵∠ACB=40°,
∴2∠BCE=40°,
∴∠BCE=20°.
∵BE平分∠DBC,
∴∠DBE=∠CBE.
∵CA=CB,BD=AC,
∴BC=BD.
在△BCE和△BDE中

∴△BCE≌△BDE(SAS),
∴∠BCE=∠D,
∴∠D=20°.
故答案為:20°

點(diǎn)評(píng):本題考查全等三角形的判定及性質(zhì)的運(yùn)用,角平分線的性質(zhì)的運(yùn)用,解答時(shí)證明三角形全等是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( �。�
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案