【題目】如圖,直線y=ax+b(a≠0)的圖象與x軸、y軸分別交于點B、C,與反比例函數(shù)y= (m>0)分別交于點A、B.已知A(﹣8,y0),D(x0,4),tanBOA=

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求BOD的面積

【答案】(1) y=0.5x+3;(2)12

【解析】

(1)根據(jù)tanBOA=,A(﹣8,y0),可求得y0=﹣1,從而可得點A坐標,利用待定系數(shù)法可求得反比例函數(shù)的解析式為y=,繼而可求得點D坐標,根據(jù)點A、點D坐標利用待定系數(shù)法即可求得一次函數(shù)的解析式;

(2)根據(jù)一次函數(shù)解析式求得B點坐標,結合D點坐標利用三角形面積公式進行求解即可得.

1)tanBOA=,A(﹣8,y0),

,

y0=﹣1,

A的坐標為(﹣8,﹣1),

把點A(﹣8,﹣1)代入y=得:

﹣1=,

解得:m=8,

即反比例函數(shù)的解析式為y=,

把點D(x0,4)代入反比例函數(shù)y=得:=4,

解得:x0=2,

即點D的坐標為(2,4),

A(﹣8,﹣1)和D(2,4)代入y=ax+b得:

解得:,

即一次函數(shù)的解析式為:y=0.5x+3;

(2)把y=0代入y=0.5x+3得:x=﹣6,

即點B的坐標為(﹣6,0),

OB=6,

SBOD==12,

BOD的面積為12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明是個愛動腦筋的學生,他在學習了二元一次方程組后遇到了這樣一道題目:現(xiàn)有8個大小相同的長方形,可拼成如圖1、2所示的圖形,在拼圖時,中間留下了一個邊長為2的小正方形,求每個小長方形的面積.

小明設小長方形的長為x,寬為y,觀察圖形得出關于x、y的二元一次方程組,解出x、y的值,再根據(jù)長方形的面積公式得出每個小長方形的面積.

解決問題:

(1)請按照小明的思路完成上述問題:求每個小長方形的面積;

(2)某周末上午,小明在超市幫媽媽買回一袋紙杯,他把紙杯整齊地疊放在一起,如圖3所示.若小明把13個紙杯整齊疊放在一起時,它的高度約是   cm;

(3)小明進行自主拓展學習時遇到了以下這道題目:如圖,長方形ABCD中放置8個形狀、大小都相同的小長方形(尺寸如圖4),求圖中陰影部分的面積,請給出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面坐標系中,ΔABC是等腰直角三角形,∠ABC=90°,AB=BC,點A坐標為(-8-3),點B坐標為(0,-5),ACx軸于點D.

1)求點CD的坐標;

2)點Mx軸上,當ΔAMB的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON30°,點 A1,A2,A3在射線ON 上,點B1,B2,B3在射線OM 上,A1B1A2,A2B3A3,A3B3A4 均為等邊三角形,若OA1=2,則A7B7A8 的邊長為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有菱形OABC,點A的坐標為(5,0),對角線OB、AC相交于點D,雙曲線y=(x>0)經(jīng)過AB的中點F,交BC于點E,且OBAC=40,有下列四個結論:

①雙曲線的解析式為y=(x>0);②直線OE的解析式為y=x;tanCAO=;AC+OB=6;其中正確的結論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸和軸交于,兩點,且與正比例函數(shù)的圖象交于點.

1)求的值;

2)求正比例函數(shù)的表達式;

3)點是一次函數(shù)圖象上的一點,且的面積是3,求點的坐標;

4)在軸上是否存在點,使的值最?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,平分,且,與相交于點,,交,下列結論:①;②;③;④.其中正確的是(

A.①②B.①③C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C是直線l上的三個點,∠DAB=∠DBE=∠ECBa,且BDBE

1)求證:ACAD+CE;

2)若a120°,點F在直線l的上方,BEF為等邊三角形,補全圖形,請判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小方格都是邊長為1個單位的正方形,A-3,1),B3,2),解答以下問題:

1)在圖中標出平面直角坐標系的原點O,并建立直角坐標系;

2)點A關于x軸的對稱點A’坐標為 ,并在坐標系中畫出點A’

3)點Px軸上一點,當PA+PB最小時,在圖中畫出點P的位置.

查看答案和解析>>

同步練習冊答案