(1)如圖,Rt△OAB中,∠OAB=90°,B(4,2),△OAB向下平移3個單位后得△O1A1B1,畫出△O1A1B1;
(2)△OAB繞點(2,0)逆時針旋轉(zhuǎn)90°后得△O2A2B2,畫出圖形并寫出各個頂點的坐標分別為
O2(2,2),A2(2,-2),B2(4,-2)
O2(2,2),A2(2,-2),B2(4,-2)
分析:(1)根據(jù)圖形平移的性質(zhì)將△OAB向下平移3個單位后得△O1A1B1即可;
(2)根據(jù)圖形旋轉(zhuǎn)不變性的性質(zhì))△OAB繞點(2,0)逆時針旋轉(zhuǎn)90°后得△O2A2B2即可.
解答:解:(1)如圖1所示:
△O1A1B1即為所求三角形;

(2)如圖2所示:
△O2A2B2,即為旋轉(zhuǎn)后的圖形.
由圖形可知:O2(2,2),A2(2,-2),B2(4,-2),
故答案為:O2(2,2),A2(2,-2),B2(4,-2).
點評:本題考查的是圖形的平移與旋轉(zhuǎn),熟知圖形經(jīng)過平移或旋轉(zhuǎn)后所得圖形與原圖形全等是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,Rt△ABC中,∠C=Rt∠,BC=5.⊙O內(nèi)切Rt△ABC的三邊AB,BC,CA于D,E,F(xiàn),半徑r=2.求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB邊上的一個動點(不與點A、B重合),過點D作CD的垂線交射線CA于點E.設(shè)AD=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2003•河南)如圖,Rt△OAB的斜邊AO在x軸的正半軸上,直角頂點B在第四象限內(nèi),S△OAB=20,OB:AB=1:2,求A、B兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港模擬)如圖,Rt△ABC中,BC=2
3
,∠ACB=90°,∠A=30°,D1是斜邊AB的中點,過D1作D1E1⊥AC于E1,連結(jié)BE1交CD1于D2;過D2作D2E2⊥AC于E2,連結(jié)BE2交CD1于D3;過D3作D3E3⊥AC于E3,…,如此繼續(xù),可以依次得到點E4、E5、…、E2013,分別記△BCE1、△BCE2、△BCE3、…、△BCE2013的面積為S1、S2、S3、…、S2013.則S2013的大小為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABO的頂點A是反比例函數(shù)y=
k
x
與一次函數(shù)y=-x-(k+1)的圖象在第二象限的交點.AB⊥x軸于B,且S△ABO=
3
2

(1)求這兩個函數(shù)的解析式;
(2)求兩個函數(shù)圖象的兩個交點A,C的坐標和△AOC的面積;
(3)利用圖象判斷,當x為何值時,反比例函數(shù)的值小于一次函數(shù)的值?

查看答案和解析>>

同步練習(xí)冊答案