教練對小明推鉛球的錄像進行技術(shù)分析,發(fā)現(xiàn)鉛球行進高度y(m)與水平距離x(m)之間的關(guān)系為,由此可知鉛球推出的距離是       m。
9

試題分析:由題意得,鉛球著地的距離即是二次函數(shù)與x軸正半軸的交點的橫坐標(biāo),所以使,解得x=9
點評:該題要求學(xué)生充分理解題意,得出所要求距離的數(shù)學(xué)意義,通過解出二次函數(shù)的解得出。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=-9x2-6ax-a2+2a;(1)當(dāng)此拋物線經(jīng)過原點,且對稱軸在y軸左側(cè).
①求此二次函數(shù)關(guān)系式;(2分)
②設(shè)此拋物線與x軸的另一個交點為A,頂點為P,
O為坐標(biāo)原點.現(xiàn)有一直線l:x=m隨著m的
變化從點A向點O平行移動(與點O不重合),
在運動過程中,直線l與拋物線交于點Q,
求△OPQ的面積S關(guān)于m的函數(shù)關(guān)系式;(5分)
(2)若二次函數(shù)在時有最大值-4,求a的值.(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(,)為頂點,且過B(,
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);
(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點時,A、B兩點隨圖象移至點、
的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(8,0),以AB為直徑作⊙O′,交軸的負半軸于點C,則點C的坐標(biāo)為       ,若二次函數(shù)的圖像經(jīng)過點A,C,B.已知點P是該拋物線上的動點,當(dāng)∠APB是銳角時,點P的橫坐標(biāo)的取值范圍是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀以下材料:
對于三個數(shù),用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù).例如:
;
解決下列問題:
(1)填空:       
(2)①如果,求;
②根據(jù)①,你發(fā)現(xiàn)了結(jié)論:
“如果,那么        (填的大小關(guān)系)”.
③運用②的結(jié)論,填空:
,則      
(3)填空:的最大值為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=-2x2+1的對稱軸是(    )
A.直線x=B.直線x=-C.直線x=2D.直線x=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點C、D是以線段AB為公共弦的兩條圓弧的中點,AB=4,點E、F分別是線段CD,AB上的動點,設(shè)AF=x,AE2-FE2=y,則能表示y與x的函數(shù)關(guān)系的圖象是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,二次函數(shù)的圖象為拋物線,交x軸于A、B兩點,交y軸于C點.其中AC=,BC=
(1)求二次函數(shù)的解析式;
(2)若P點為拋物線上一動點且在x軸下方運動,當(dāng)以P為圓心,1為半徑的⊙P與直線BC相切時,求出符合條件的P點橫坐標(biāo);
(3)如圖2,若點E從點A出發(fā),以每秒3個單位的速度沿著AB向點B勻速運動,點F從點A出發(fā),以每秒個單位的速度沿著AC向點C勻速運動.兩點同時出發(fā),當(dāng)其中一點到達終點時,另一點也隨之停止運動.過點E作AB的垂線交拋物線于點E′,作點F關(guān)于直線的對稱點F′.設(shè)點E的運動時間為t(s),點F′ 能恰好在拋物線嗎?若能,請直接寫出t的值;若不能,請說明理由.
    
圖1                       圖2                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的對稱軸為,則        

查看答案和解析>>

同步練習(xí)冊答案