【題目】如圖,四邊形ABCD中,ADBC,ABC=90°,AB=BC=1,OAC的中點(diǎn),OEODAB于點(diǎn)E.AE=,則DO的長(zhǎng)為_____________.

【答案】

【解析】

求出DAO≌△EBO,推出OD=OE,AD=BE,求出AD=BE=,由勾股定理得出DE2=DO2+OE2=AD2+AE2,求出即可.

連結(jié)DE,如圖,

∵∠ABC=90°OAC的中點(diǎn),

∴∠CAB=ACB=45°,∠ABO=45°,AO=BO=CO,∠AOB=90°,

OEOD,

∴∠DOE=AOB=90°,

∴∠DOA=BOE=90°-AOE,

ADBC,

∴∠DAB=180°-ABC=90°

∴∠DAO=90°-45°=45°,

∴∠DAO=OBE,

DAOEBO

∴△DAO≌△EBOASA),

OD=OE,AD=BE

AB=1,AE=

AD=BE=1-=,

RtDAERtDOE中,由勾股定理得:DE2=DO2+OE2=AD2+AE2,

2DO2=2+2,

DO=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴打車為市民的出行帶來了很大的方便,小亮調(diào)查了若干市民一周內(nèi)使用滴滴打車的時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)這次被調(diào)查的總?cè)藬?shù)是多少?

(2)試求表示C組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若全市的總?cè)藬?shù)為666萬,試求全市一周內(nèi)使用滴滴打車超過20分鐘的人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一對(duì)數(shù),如下表,第個(gè)數(shù)比第n個(gè)數(shù)大2(其中n是正整數(shù))

1個(gè)

2個(gè)

3個(gè)

4個(gè)

5個(gè)

……

a

b

c

(1)5個(gè)數(shù)表示為______;第7個(gè)數(shù)表示為_______.

(2)若第10個(gè)數(shù)是5,第11個(gè)數(shù)是8,第12個(gè)數(shù)為9,則a______,b_____,c______.

(3)2019個(gè)數(shù)可表示為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了有效控制酒后駕車,某天黃石交警大隊(duì)的一輛警車在東西方向的花湖大道上巡視,警車從某地A處出發(fā),規(guī)定向東方向?yàn)檎?dāng)天行駛紀(jì)錄如下(單位:千米)

+10,-9+7,-15,+6,-5,+4,-2

1)此時(shí),這輛巡邏的汽車司機(jī)如何向隊(duì)長(zhǎng)描述他的位置?

2)如果警車行駛1千米耗油0.2升,油箱有油10升,現(xiàn)在警車要回到出發(fā)點(diǎn)A處,那么油箱的油夠不夠?若不夠,途中至少需補(bǔ)充多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠制作甲、乙兩種環(huán)保包裝盒,已知同樣用6m材料制成甲盒的個(gè)數(shù)比制成乙盒的個(gè)數(shù)少2個(gè),且制成一個(gè)甲盒比制成一個(gè)乙盒需要多用20%的材料.

(1)求制作每個(gè)甲盒、乙盒各用多少米材料?

(2)如果制作甲、乙兩種包裝盒共3000個(gè),且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請(qǐng)寫出所需要材料的總長(zhǎng)度l(m)與甲盒數(shù)量n(個(gè))之間的函數(shù)關(guān)系式,并求出最少需要多少米材料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)EBC的中點(diǎn),點(diǎn)FAB邊上,HBC延長(zhǎng)線上,且CH=AF,連接DF,DE,DH。

1)求證DF=DH

2)求的度數(shù)并寫出計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:用n根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

問題探究:不妨假設(shè)能搭成種不同的等腰三角形,為探究之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測(cè)得出結(jié)論.

探究一:

1)用3根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

此時(shí),顯然能搭成一種等腰三角形。所以,當(dāng)時(shí),

2)用4根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形

所以,當(dāng)時(shí),

3)用5根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

4)用6根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的三角形?

若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形

若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形

所以,當(dāng)時(shí),

綜上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三角形?

(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表中)

2)分別用8根、9根、10根相同的木棒搭成一個(gè)三角形,能搭成多少種不同的等腰三

角形?(只需把結(jié)果填在表中)


7

8

9

10






你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,……

解決問題:用根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

(設(shè)分別等于、、,其中是整數(shù),把結(jié)果填在表中)











問題應(yīng)用:用2016根相同的木棒搭一個(gè)三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個(gè)腰用了__________________根木棒。(只填結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形ABC中,∠ABC=90°,∠C=30°AB=4,以B為圓心,BA為半徑作⊙BBC于點(diǎn)D,旋轉(zhuǎn)∠ABD交⊙B于點(diǎn)E、F,連接EFAC、BC邊于點(diǎn)G、H

1)若BEAC,求tanCGH的值;

2)若AG=4,求BEFABC重疊部分的面積;

3BHE是等腰三角形時(shí),∠ABD逆時(shí)針旋轉(zhuǎn)的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分別是AB、BD的中點(diǎn),連接EF,點(diǎn)P從點(diǎn)E出發(fā),沿EF方向勻速運(yùn)動(dòng),速度為1cm/s,同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<4)s,解答下列問題:

(1)求證:△BEF∽△DCB;

(2)當(dāng)點(diǎn)Q在線段DF上運(yùn)動(dòng)時(shí),若△PQF的面積為0.6cm2,求t的值;

(3)如圖2過點(diǎn)QQG⊥AB,垂足為G,當(dāng)t為何值時(shí),四邊形EPQG為矩形,請(qǐng)說明理由;

(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?試說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案