如圖,拋物線軸的交點為A、B,與 軸的交點為C,頂點為,將拋物線繞點B旋轉(zhuǎn),得到新的拋物線,它的頂點為D.

(1)求拋物線的解析式;
(2)設(shè)拋物線軸的另一個交點為E,點P是線段ED上一個動點(P不與E、D重合),過點P作y軸的垂線,垂足為F,連接EF.如果P點的坐標為,△PEF的面積為S,求S與的函數(shù)關(guān)系式,寫出自變量的取值范圍;
(3)設(shè)拋物線的對稱軸與軸的交點為G,以G為圓心,A、B兩點間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說明理由.

(1)拋物線n的解析式為 (2)S= (3)直線CM與⊙G相切;證明所以直線CM與⊙G相切

解析試題分析:(1)∵拋物線m的頂點為,∴m的解析式為:
解方程:得:x1=" -2" ,x2=8 ∴       
∵拋物線n是由拋物線m繞點B旋轉(zhuǎn)得到,∴D的坐標為 
∴拋物線n的解析式為:,即 
(2)∵點E與點A關(guān)于點B中心對稱,∴E, 設(shè)直線ED的解析式為,
,解得 ∴直線ED的解析式為 
又點P的坐標為,∴S==–xy=
即S= 
(3)直線CM與⊙G相切  
理由如下:∵拋物線m的解析式為y=,令.∴
∵拋物線m的對稱軸與軸的交點為G,∴OC=4,OG=3,∴由勾股定理得CG=5
又∵AB=10,∴⊙G的半徑為5,∴點C在⊙G上 

過M點作y軸的垂線,垂足為N,則

 ∴根據(jù)勾股定理逆定理,得∠GCM=900
 ∴直線CM與⊙G相切 
考點:拋物線,勾股定理,直線與圓相切
點評:本題考查拋物線,勾股定理,直線與圓相切,要求考生掌握用待定系數(shù)法求函數(shù)的解析式,會判定直線與圓相切,熟悉勾股定理的內(nèi)容

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:044

如圖,拋物線軸分別交于,兩點.

(1)求AB兩點的坐標;

(2)求 拋物線頂點M關(guān)于軸對稱的點的坐標,并判斷四邊形AMB是何特殊平行四邊形(不要求說明理由).

[注:拋物線的頂點坐標為]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線軸交于點、點,與直線相交于點、點,直線軸交于點。

(1)求直線的解析式;
(2)求的面積;
(3)若點在線段上以每秒1個單位長度的速度從運動(不與重合),同時,點在射線上以每秒2個單位長度的速度從運動.設(shè)運動時間為秒,請寫出的面積的函數(shù)關(guān)系式,并求出點運動多少時間時,的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇江陰石莊中學九年級下學期期中考試數(shù)學卷(帶解析) 題型:解答題

如圖,拋物線軸交于兩點,于軸交于點
,

(1)求出拋物線的解析式以及;
(2)在軸下方的拋物線上是否存在一點,使四邊形的面積最大,若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年湖北天門九年級畢業(yè)考試數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線軸交于A、B兩點,與y軸交于C點,且

1.求拋物線的解析式及頂點D的坐標;

2.點軸上的一個動點,當?shù)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062900394848436834/SYS201206290040593281842422_ST.files/image006.png">值最小

時,求的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線軸的交點是、,與軸的交點是C.

(1)求拋物線的函數(shù)表達式;

(2)設(shè)(0<<6)是拋物線上的動點,過點PPQy軸交直線BC于點Q.

①當取何值時,線段PQ的長度取得最大值?其最大值是多少?

②是否存在這樣的點P,使△OAQ為直角三角 形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案