【題目】
(1)解方程:
(2)解不等式組: .
【答案】
(1)解:去分母得:2x﹣1+x+2=0,
解得:x=﹣ ,
經檢驗,x=﹣ 是分式方程的解;
(2)解: ,
由①得:x≥1,由②得:x>3,
則不等式組的解集為x>3.
【解析】(1)分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解;(2)分別求出不等式組中兩不等式的解集,找出解集的公共部分即可確定出解集.
【考點精析】本題主要考查了去分母法和一元一次不等式組的解法的相關知識點,需要掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】下表是某校合唱團成員的年齡分布
年齡/歲 | 13 | 14 | 15 | 16 |
頻數 | 5 | 15 | x | 10﹣x |
對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是( )
A.平均數、中位數
B.眾數、中位數
C.平均數、方差
D.中位數、方差
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉,得△A′BO′,點A,O旋轉后的對應點為A′,O′,記旋轉角為α.
(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標;
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉后的對應點為P′,當O′P+BP′取得最小值時,求點P′的坐標(直接寫出結果即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學統(tǒng)計了周六該停車場各時段的借、還自行車數,以及停車場整點時刻的自行車總數(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現存量y(輛)與x(x為整數)滿足如圖所示的一個二次函數關系.
時段 | x | 還車數 | 借車數 | 存量y |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
根據所給圖表信息,解決下列問題:
(1)m= , 解釋m的實際意義:;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數關系式;
(3)已知9:00~10:O0這個時段的還車數比借車數的3倍少4,求此時段的借車數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2﹣2x﹣8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應的函數關系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )
A.3:4
B. :2
C. :2
D.2 :
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com