【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點A,頂點為B.

(1)用含a的式子表示點B的坐標;

(2)經(jīng)過點C(0,﹣2)的直線AC與OB(O為原點)相交于點D,與拋物線的對稱軸相交于點E,OCD≌△BED,求a的值.

【答案】(1),﹣;(2)

【解析】

試題分析:(1)利用配方法即可求得B的坐標;

(2)依據(jù)OCD≌△BED可得BE=CO,據(jù)此即可求得BF的長,根據(jù)B的坐標求得a的值.

試題解析:(1)y=ax2﹣2x=,則B的坐標是(,﹣);

(2)點C的坐標是(0,﹣2),OC=2,設拋物線的對稱軸與x軸相交于點F.

EFy軸,F(xiàn)是OA的中點,EF=CO=1.

∵△OCD≌△BED,BE=CO=2,BF=BE+EF=3,=﹣3,a=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】各頂點都在方格紙格點(橫豎格子線的交錯點)上的多邊形稱為格點多邊形.如何計算它的面積?奧地利數(shù)學家皮克(GPick,1859~1942年)證明了格點多邊形的面積公式,其中a表示多邊形內(nèi)部的格點數(shù),b表示多邊形邊界上的格點數(shù),S表示多邊形的面積.如圖,,

(1)請在圖中畫一個格點正方形,使它的內(nèi)部只含有4個格點,并寫出它的面積.

(2)請在圖乙中畫一個格點三角形,使它的面積為,且每條邊上除頂點外無其它格點.(注:圖甲、圖乙在答題紙上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知am=2an=3,則an+m=(  )

A. 2 B. 3 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷售量(m件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:

②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關系如下表:

(1)求m關于x的一次函數(shù)表達式;

(2)設銷售該產(chǎn)品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】

(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年我國約有9400000人參加高考,將9400000用科學記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①,圖②,圖③都是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1.在圖①,圖②中已畫出線段AB,在圖③中已畫出點A.按下列要求畫圖:

(1)在圖①中,以格點為頂點,AB為一邊畫一個等腰三角形;

(2)在圖②中,以格點為頂點,AB為一邊畫一個正方形;

(3)在圖③中,以點A為一個頂點,另外三個頂點也在格點上,畫一個面積最大的正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a2b28,且ab=﹣4,則a+b_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD.

(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;②
(2)如果∠COP=20°,則①∠BOP=°;②∠POF=°.
(3)∠EOC與∠BOF相等嗎? , 理由是
(4)如果∠COP=20°,求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們在學完“平移、軸對稱、旋轉(zhuǎn)”三種圖形的變化后,可以進行進一步研究,請根據(jù)示例圖形,完成下表.

查看答案和解析>>

同步練習冊答案