已知:AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,E是直線AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.

(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:OE•OP=;

(2)當(dāng)點(diǎn)E在AB(或BA)的延長線上時(shí),以如圖2點(diǎn)E的位置為例,請(qǐng)你畫出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請(qǐng)說明理由.

 

 

【答案】

(1)證明見解析;(2)成立, 理由見解析.

【解析】

試題分析:(1)要證等積式,需要將其化為比例式,再利用相似證明. 觀察圖形,此題顯然要連半徑OF,構(gòu)造OE、OP所在的三角形, 這樣問題便轉(zhuǎn)化為證明△FOE∽△POF.  而要證明△FOE∽△POF,由于已經(jīng)存在一個(gè)公共角,因此只需再證明另一角對(duì)應(yīng)相等即可,這一點(diǎn)利用圓周角定理及其推論可獲證.(2)同(1)類似.

試題解析:(1)連接FO并延長交⊙O于Q,連接DQ.

∵FQ是⊙O直徑,∴∠FDQ=90°. ∴∠QFD+∠Q=90°.

∵CD⊥AB,∴∠P+∠C=90°.

∵∠Q=∠C,∴∠QFD=∠P.

∵∠FOE=∠POF,∴△FOE∽△POF. ∴. ∴OE·OP=OF2=r2.

(2)當(dāng)點(diǎn)E在AB(或BA)的延長線上時(shí),(1)中的結(jié)論成立. 理由如下:

依題意畫出圖形(如圖),連接FO并延長交⊙O于M,連接CM.

∵FM是⊙O直徑,∴∠FCM=90°. ∴∠M+∠CFM=90°.

∵CD⊥AB,∴∠E+∠D=90°.

∵∠M=∠D,∴∠CFM=∠E.

∵∠POF=∠FOE,∴△POF∽△FOE. ∴. ∴OE·OP=OF2=r2.

考點(diǎn):1.圓周角定理;2.相似三角形的判定和性質(zhì);3.三角形內(nèi)角和定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

曙光中學(xué)需制作一副簡(jiǎn)易籃球架,如圖是籃球架的側(cè)面示意圖,已知籃板所在直線AD和直桿EC都與BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜桿AB與直桿EC的長分別是多少米?(結(jié)果精確到0.01米)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•欽州)如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

紅星中學(xué)籃球課外活動(dòng)小組的同學(xué)自己動(dòng)手制作一副簡(jiǎn)易籃球架.如圖,是籃球架的側(cè)面示意圖,已知籃板所在直線AD和直桿EC都與BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜桿AB與直桿EC的長分別是多少米?(計(jì)算結(jié)果精確到0.01米,參考數(shù)據(jù):(sin40°≈0.588,cos40°≈0.809,tan40°≈0.727.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知線段AB=4,點(diǎn)C是平面上一點(diǎn)(不與A,B重合),M、N分別是線段CA,CB的中點(diǎn).
(1)當(dāng)C在線段AB上時(shí),如圖,求MN的長;
(1)當(dāng)C在線段AB的延長線上時(shí),畫出圖形,并求MN長;
(2)當(dāng)C在直段AB外時(shí),畫出圖形,量一量,寫出MN的長(不寫理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案