【題目】如圖,二次函數(shù)的圖象經(jīng)過A(2,0),B(0,-6)兩點(diǎn).
(1)求這個二次函數(shù)的解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
(3)在拋物線的對稱軸上是否存在一點(diǎn)P.使得以O(shè)、B、C、P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由.
【答案】(1)(4,2);(2)6;(3)存在, P1(2,6),P2(2,-6)
【解析】試題分析:(1)題利用待定系數(shù)法求出解析式;
(2)以AC為三角形的底,OB為三角形的高,求出三角形的底與高就可以求出,三角形面積;
(3)分兩種情況討論即可.
試題解析:解:(1)將A(2,0)、B(0,﹣6)兩點(diǎn)代入則:
,解得: ,∴解析式為y=x2+4x﹣6,∵y=x2+4x﹣6=,∴頂點(diǎn)坐標(biāo)為:(4,2);
(2)令x2+4x﹣6=0,∴x2﹣8x+12=0,∴解得:x1=2,x2=6,∴另一個交點(diǎn)C(6,0),
∴AC=2,∴S△ABC=×2×6=6;
(3)存在.分兩種情況討論:
①顯然過B作BP∥OC交對稱軸于點(diǎn)P,則四邊形OBPC是矩形,此時P(2,-6);
②過O作OP∥BC交對稱軸于點(diǎn)P,∵OB∥PC,∴四邊形OBCP是平行四邊形,∴CP=OB=6,∴P(2,6).
綜上所述:P(2,6)或P(2,-6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點(diǎn)E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)將△ADF繞著點(diǎn)A順時針旋轉(zhuǎn)90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點(diǎn)M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點(diǎn)O,⊙O與AC相切于點(diǎn)D,BE⊥AB交AC的延長線于點(diǎn)E,與⊙O相交于G,F兩點(diǎn).
(1)求證:AB與⊙O相切;
(2)若AB=4,求線段GF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明晚飯后外出散步,遇見同學(xué),交談一會,返回途中在讀報(bào)廳看了一會報(bào).下圖是根據(jù)此情景畫出的圖象,請你回答下列問題:
(1)小明在距家多遠(yuǎn)遇見同學(xué)的,交談了多少時間?
(2)讀報(bào)廳離家多遠(yuǎn)?
(3)小明在哪一段路程中走得最快,速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中華人民共和國道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A的正前方60米處的C點(diǎn),過了5秒后,測得小汽車所在的B點(diǎn)與車速檢測儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請說明理由.
【答案】這輛小汽車沒有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長;
(2)直接求出小汽車的時速,進(jìn)行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒有超速.
【點(diǎn)睛】
考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線段AC和BD相交于點(diǎn)G,連接AB,CD,E是CD上一點(diǎn),F是DG上一點(diǎn),,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:基本不等式≤(a>0,b>0),當(dāng)且僅當(dāng)a=b時,等號成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(小)值問題的有力工具.
例如:在x>0的條件下,當(dāng)x為何值時,x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
當(dāng)且僅當(dāng)x=即x=1時,x+有最小值,最小值為2.
請根據(jù)閱讀材料解答下列問題
(1)若x>0,函數(shù)y=2x+,當(dāng)x為何值時,函數(shù)有最小值,并求出其最小值.
(2)當(dāng)x>0時,式子x2+1+≥2成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn),以CD為直徑作⊙O,交邊AC于點(diǎn)P,連接BP,交AD于點(diǎn)E.
(1)求證:AD是⊙O的切線;
(2)如果PB是⊙O的切線,BC=4,求PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是兩張形狀、大小相同但是畫面不同的圖片,把兩張圖片從中間剪斷,再把四張形狀相同的小圖片(標(biāo)注a、b、c、d)混合在一起,從四張圖片中隨機(jī)摸取一張,接著再隨機(jī)摸取一張,則這兩張小圖片恰好合成一張完整圖片的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com