【題目】已知一次函數(shù)y=x+b,它的圖象與兩坐標軸所圍成的圖形的面積等于2.
(1)求b的值;
(2)若函數(shù)y=x+b的圖象交y軸于正半軸,則當x取何值時,y的值是正數(shù)?
【答案】(1)b=±2;(2)當x>﹣2時,y的值是正數(shù).
【解析】
(1)分別將x=0、y=0代入一次函數(shù)解析式中求出與之對應的y、x的值,再根據(jù)三角形的面積公式即可得出關(guān)于b的一元二次方程,解之即可得出結(jié)論;
(2)先根據(jù)函數(shù)y=x+b的圖象交y軸于正半軸得到一次函數(shù)解析式,再根據(jù)y的值是正數(shù)得到關(guān)于x的不等式,解不等式即可求解.
(1)當x=0時,y=b,
∴一次函數(shù)圖象與y軸的交點坐標為(0,b);
當y=x+b=0時,x=﹣b,
∴一次函數(shù)圖象與y軸的交點坐標為(﹣b,0).
∴×|b|×|﹣b|=2,
解得:b=±2.
(2)∵函數(shù)y=x+b的圖象交y軸于正半軸,
∴一次函數(shù)為y=x+2,
∵y的值是正數(shù),
∴x+2>0,
解得x>﹣2.
故當x>﹣2時,y的值是正數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+bx+c與x軸交于點A,B(A在B的左側(cè)),拋物線的對稱軸為直線x=1,AB=4.
(1)求拋物線的表達式;
(2)拋物線上有兩點M(x1 , y1)和N(x2 , y2),若x1<1,x2>1,x1+x2>2,試判斷y1與y2的大小,并說明理由;
(3)直線l過A及C(0,﹣2),P為拋物線上一點(在x軸上方),過P作PD∥y軸交直線AC于點D,以PD為直徑作⊙E,求⊙E在直線AC上截得的線段的最大長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC為矩形,點A(0,8),C(6,0).動點P從點B出發(fā),以每秒1個單位長的速度沿射線BC方向勻速運動,設運動時間為t秒.
(1)當t= s時,以OB、OP為鄰邊的平行四邊形是菱形;
(2)當點P在OB的垂直平分線上時,求t的值;
(3)將△OBP沿直線OP翻折,使點B的對應點D恰好落在x軸上,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點F,過F作DE∥BC,交AB于點D,交AC于點E.若BD=4,DE=7,則線段EC的長為( 。
A. 3 B. 4 C. 3.5 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)計劃對面積為400m2的區(qū)域進行綠化.經(jīng)測算,甲隊每天能完成綠化面積是乙隊每天能完成綠化面積的2倍,且甲隊單獨完成比乙隊單獨完成少用4天.求甲、乙兩隊每天單獨完成綠化的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(﹣2,1),B(﹣3,﹣2),C(1,﹣2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1.
(1)在圖中畫出△A1B1C1;
(2)點A1,B1,C1的坐標分別為 、 、 ;
(3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果事件A發(fā)生的概率是 ,那么在相同條件下重復試驗,下列4種陳述中,不正確的有 ①說明做100次這種試驗,事件A必發(fā)生1次
②說明事件A發(fā)生的頻率是
③說明做100次這種試驗中,前99次事件A沒發(fā)生,后1次事件A才發(fā)生
④說明做100次這種試驗,事件A可能發(fā)生1次( )
A.①、②、③
B.①、②、④
C.②、③、④
D.①、②、③、④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某人到島上去探寶,從A處登陸后先往東走4 km,又往北走1.5 km,遇到障礙后又往西走2 km,再折回向北走到4.5 km處往東一拐,僅走0.5 km就找到寶藏.問登陸點A與寶藏埋藏點B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=8cm.點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿C→B→A→D→C的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了3cm,并沿B→C→D→A的路徑勻速運動;點Q保持速度不變,繼續(xù)沿原路徑勻速運動,3s后兩點在長方形ABCD某一邊上的E點處第二次相遇后停止運動.設點P原來的速度為xcm/s.
(1)點Q的速度為 cm/s(用含x的代數(shù)式表示);
。2)求點P原來的速度.
(3)判斷E點的位置并求線段DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com