【題目】已知直線與⊙O,AB是⊙O的直徑,AD⊥于點D.
(1)如圖①,當直線與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大;
(2)如圖②,當直線與⊙O相交于點E、F時,若∠DAE=18°,求∠BAF的大。
【答案】(1)30°;(2)18°.
【解析】試題分析:(1)連接OD,易證OC∥AD,所以∠OCA=∠DAC,由因為OA=OC,所以∠OAC=∠OCA;
(2)連接BE,AB是⊙O的直徑,所以∠AEB=90°,從而可知∠BEF=∠DAE=18°,由圓周角定理可知:∠BAF=∠BEF=18°
試題解析:(1)連接OC、
∵l是⊙O的切線,
∴OC⊥l,
∵AD⊥l,
∴OC∥AD,
∴∠OCA=∠DAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
(2)連接BE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∴∠AED+∠BEF=90°,
∵∠AED+∠DAE=90°,
∴∠BEF=∠DAE=18°,
∵,
∴∠BAF=∠BEF=18°
科目:初中數(shù)學 來源: 題型:
【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過一段時間原路返回,剛好在第回到家中.設小明出發(fā)第時的速度為,離家的距離為.與之間的函數(shù)關系如圖所示(圖中的空心圈表示不包含這一點).
(1)小明出發(fā)第時離家的距離為 ;
(2)當時,求與之間的函數(shù)表達式;
(3)畫出與之間的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建生態(tài)文明建設城市,對公路旁的綠化帶進行全面改造.現(xiàn)有甲、乙兩個工程隊,甲隊單獨完成這項工程,剛好如期完成,每施工一天,需付工程款1.5萬元;乙工程隊單獨完成這項工程要比規(guī)定工期多用a天,乙工程隊每施工一天需付工程款1萬元.若先由甲、乙兩隊一起合作b天,剩下的工程由乙隊單獨做,也正好如期完工
(1)當a=6,b=4時,求工程預定工期的天數(shù).
(2)若a﹣b=2.a是偶數(shù)
①求甲隊、乙隊單獨完成工期的天數(shù)(用含a的代數(shù)式表示)
②工程領導小組有三種施工方案:
方案一:甲隊單獨完成這項工程;
方案二:乙隊單獨完成這項工程;
方案三:先由甲、乙兩隊一起合作b天,剩下的工程由乙隊單獨做.
為了節(jié)省工程款,同時又能如期完工,請你選擇一種方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B與∠C的角平分線相交于點I,過點I作BC的平行線,分別交AB、AC于點D、E.若AB=9,AC=6,BC=8,則△ADE的周長是( )
A. 14B. 15C. 17D. 23
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的中線.
(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應字母.(保留作圖痕跡,不寫作法)
①作線段AC的垂直平分線,分別交AC、AD、AB于點E、M、F;②連接CM、BM;
(2)若∠CAD=20°,求∠MCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,以點為圓心,長為半徑畫弧交于點,再分別以點、為圓心,大于的相同長為半徑畫弧,兩弧交于點,連接并延長交于點,連接,則所得四邊形是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形是菱形.
(2)若菱形的周長為16,,求菱形的面積及的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0;④當y>0時,x的取值范圍是﹣1≤x<3;
⑤當x<0時,y隨x增大而增大.
其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.
(1)小明回答該問題時,對第二個字是選“重”還是選“窮”難以抉擇,若隨機選擇其中一個,則小明回答正確的概率是 ;
(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.
(1)求證:四邊形CODE是矩形.
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com