【題目】已知四邊形ABCD,ABC+ADC=180,連接AC,BD.

(1)如圖1,當(dāng)∠ACD=CAD=45時(shí),求∠CBD的度數(shù);

(2)如圖2,當(dāng)∠ACD=CAD=60時(shí),求證:AB+BC=BD;

(3)如圖3,(2)的條件下,過點(diǎn)CCKBD于點(diǎn)K,AB的延長線上取點(diǎn)F,使∠FCG=60,過點(diǎn)FFHBD于點(diǎn)H,BD=8,AB=5,GK=,求BH的長。

【答案】(1)45°

2)見解析

3

【解析】

1)根據(jù)已知條件得到A,B,CD四點(diǎn)共圓,根據(jù)圓周角定理即可得到結(jié)論;

2)在BD截取BE=AB,連接CE,根據(jù)圓周角定理得到∠ABD=ACD=60°,推出△ABE是等邊三角形,△ACD是等邊三角形,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

3)根據(jù)圓周角定理得到∠CBD=ABC=CAD=60°,解直角三角形得到BK=,,CK=,DK=,由勾股定理得到CD=7,求得AC=CD=7,根據(jù)相似三角形的性質(zhì)得到AF=,BF=,解直角三角形即可得到結(jié)論.

(1) ∵∠ABC+ADC=180

A,B,C,D四點(diǎn)共圓,

∵∠ACD=CAD=45,

∴∠CBD=CAD=45;

(2) BD截取BE=AB,連接CE,

∵∠ABC+ADC=180

A,B,C,D四點(diǎn)共圓,

∴∠ABD=ACD=60,

∴△ABE是等邊三角形,

AB=BE=AE,

∵∠ACD=CAD=60,

∴△ACD是等邊三角形,

AC=AD,CAD=BAE=60,

∴∠BAC=DAE,

在△ABC與△ADE,

∴△ABC≌△AED,

BC=DE

BD=BE+DE,

BD=BC+AB;

(3)BD=8,AB=5,

BC=3,

A,B,C,D四點(diǎn)共圓,

∴∠CBD=ABC=CAD=60

CKBD,

BK=BC=,CK=,

DK=

CD==7

AC=CD=7,

∵∠FCG=60,

∴∠FCG=CBD,

A,B,CD四點(diǎn)共圓,

∴∠BAC=CDB,

∴△AFC∽△DCB

,

AF=

BF=,

∵∠FBH=ABD=60,

FHBD,

BH=BF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y=x-3x軸,y軸分別交于點(diǎn)A和點(diǎn)B

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點(diǎn)為M,則MAB的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,A=36°,∠C=72°,點(diǎn)DAC上,BC=BDDEBCAB于點(diǎn)E,則圖中等腰三角形共有( )

A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )

A. 函數(shù)有最小值

B. 對(duì)稱軸是直線x=

C. 當(dāng)x,yx的增大而減小

D. 當(dāng)﹣1x2時(shí),y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對(duì)稱軸為直線x=-2,點(diǎn)C在拋物線上,且位于點(diǎn)AB之間(C不與A、B重合).若ABC的周長為a,則四邊形AOBC的周長為________(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=OC=6,過點(diǎn)A的直線ADBC于點(diǎn)D,y軸與點(diǎn)G,ABD的面積為△ABC面積的.

(1)求點(diǎn)D的坐標(biāo);

(2)過點(diǎn)CCEAD,交AB交于F,垂足為E.

①求證:OF=OG;

②求點(diǎn)F的坐標(biāo)。

(3)(2)的條件下,在第一象限內(nèi)是否存在點(diǎn)P,使△CFP為等腰直角三角形?若存在,直接寫出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DCE中,CA=CBCD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點(diǎn)0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫出結(jié)果);

(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,CMAEM點(diǎn),延長MCBD交于點(diǎn)N.求證:NBD的中點(diǎn).

:(2)問的解答過程無需注明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=-2x與直線ykxb相交于點(diǎn)A(a,2),并且直線ykxb經(jīng)過x軸上點(diǎn)B(2,0)

(1)求直線ykxb的解析式;

(2)求兩條直線與y軸圍成的三角形面積;

(3)直接寫出不等式(k2)xb≥0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;

(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案