【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a0)的圖象與反比例函數(shù)y=(k0)的圖象交于第一、三象限內的兩點A、B,與y軸交于C點.過點AADy軸,垂足為點D,AD=8,OC=2,tanACD=2.點B的坐標為(m,﹣4).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當x取何值時,ax+b﹣0成立.

【答案】(1)y=,y=x+2;(2)當﹣12x0x8時,ax+b﹣0成立.

【解析】

(1)先利用正切的定義計算出CD,從而得到A點坐標,從而把A點坐標代入y=中求出k得到反比例函數(shù)解析式;再利用反比例函數(shù)解析式確定B點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;

(2)利用函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象上方所對應的自變量的值即可.

(1)在RtACD中,tanACD==2,

CD=AD=4,

OC=2,

OD=6,

A(8,6),

A(8,6)代入y=k=8×6=48,

∴反比例函數(shù)解析式為y=,

B(m,﹣4)代入y=得﹣4m=48,解得m=﹣12,

B(﹣12,﹣4),

A(8,6),B(﹣12,﹣4)代入y=ax+b,解得

∴一次函數(shù)解析式為y=x+2;

(2)當﹣12<x<0x>8時,ax+b﹣>0成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段ACE

1)當∠BDA=115°時,∠EDC=______°,∠DEC=______°;點DBC運動時,∠BDA逐漸變______(填);

2)當DC等于多少時,ABD≌△DCE,請說明理由;

3)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系中,拋物線y=ax2﹣4ax+c與直線y=kx+1(k0)交于y軸上一點A和第一象限內一點B,該拋物線頂點H的縱坐標為5.

(1)求拋物線的解析式;

(2)連接AH、BH,拋物線的對稱軸與直線y=kx+1(k0)交于點K,若SAHB=,求k的值;

(3)在(2)的條件下,點P是直線AB上方的拋物線上的一動點(如圖2),連接PA.當∠PAB=45°時,

)求點P的坐標;

)已知點M在拋物線上,點Nx軸上,當四邊形PBMN為平行四邊形時,請求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某次訓練中,甲、乙兩名射擊運動員各射擊10發(fā)子彈的成績統(tǒng)計圖如圖所示,對于本次訓練,有如下結論:S2>S2S2<S2;甲的射擊成績比乙穩(wěn)定;乙的射擊成績比甲穩(wěn)定,由統(tǒng)計圖可知正確的結論是(

A.①③ B.①④ C.②③ D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)對徐州市相關的市場物價調研,預計進入夏季后的某一段時間,某批發(fā)市場內的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖所示.

1)分別求出y1y2x之間的函數(shù)關系式;

2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時 獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8字”的性質及應用:

1)如圖,AD、BC相交于點O,得到一個“8字”ABCD,求證:∠A+B=∠C+D

2)圖中共有多少個“8字”?

3)如圖,∠ABC和∠ADC的平分線相交于點E,利用(1)中的結論證明∠E(∠A+C).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,BC=8

1)求對角線AC的長;

2)點E是線段CD上的一點,把ADE沿著直線AE折疊.點D恰好落在線段AC上,與點F重合,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,AB、DE交于點F試判斷線段ABDE的數(shù)量關系和位置關系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,Ax軸負半軸上的點,By軸負半軸上的點.

1)如圖①,以A點為頂點,AB為腰在第三象限作等腰RtABC.若已知A(﹣2,0B0,﹣4),試求C點的坐標;

2)如圖②,若點A的坐標為(﹣2,0),點B的坐標為(0,a),點D的縱坐標為b,以B為頂點,BA為腰作等腰RtABD,當B點沿y軸負半軸向下運動且其他條件都不變時,求ba的值;

3)如圖③,Ex軸負半軸上的一點,且OBOEOFEB于點F,以OB為邊在第四象限作等邊OBM,連接EMOF于點N,探究EM-ONEN的數(shù)量關系.

查看答案和解析>>

同步練習冊答案